cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195475 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and angles 30,60,90.

This page as a plain text file.
%I A195475 #5 Mar 30 2012 18:57:45
%S A195475 6,4,3,8,4,6,3,1,3,2,9,8,7,4,3,5,3,1,5,6,9,3,7,2,1,0,7,2,1,1,8,0,9,7,
%T A195475 2,0,6,7,5,1,9,8,1,6,0,8,2,1,8,5,8,7,2,8,7,9,9,8,8,4,7,9,2,4,7,7,6,0,
%U A195475 4,9,3,3,7,6,7,7,9,9,8,3,9,1,9,0,0,8,7,9,2,8,3,1,3,7,8,0,4,6,5,7
%N A195475 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(3),2) and angles 30,60,90.
%C A195475 See A195304 for definitions and a general discussion.
%e A195475 (A)=0.643846313298743531569372107211809720...
%t A195475 a = 1; b = Sqrt[3]; h = 2 a/3; k = b/3;
%t A195475 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195475 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195475 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195475 RealDigits[%, 10, 100] (* (A) A195575 *)
%t A195475 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195475 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195475 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195475 RealDigits[%, 10, 100] (* (B) A195576 *)
%t A195475 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195475 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195475 f3 = (f[t])^(1/2) /. Part[s, 4]
%t A195475 RealDigits[%, 10, 100] (* (C) A195577 *)
%t A195475 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195475 RealDigits[%, 10, 100] (* Philo(ABC,G) A195578 *)
%Y A195475 Cf. A195304, A195476, A195477, A195478.
%K A195475 nonn,cons
%O A195475 0,1
%A A195475 _Clark Kimberling_, Sep 19 2011