cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195479 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).

This page as a plain text file.
%I A195479 #5 Mar 30 2012 18:57:47
%S A195479 1,2,4,4,0,6,2,1,5,6,7,5,4,7,3,6,9,8,9,2,5,4,6,9,2,9,7,6,1,3,4,4,1,4,
%T A195479 4,0,6,9,0,1,1,4,2,6,7,9,8,3,5,1,2,6,3,8,8,2,6,0,1,5,8,3,0,3,1,7,0,7,
%U A195479 6,7,2,1,2,4,1,2,7,3,4,6,1,2,0,3,4,7,1,6,2,2,1,5,0,0,5,1,5,8,2,5
%N A195479 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).
%C A195479 See A195304 for definitions and a general discussion.
%e A195479 (A)=1.24406215675473698925469297613441440690...
%t A195479 a = 2; b = Sqrt[5]; h = 2 a/3; k = b/3;
%t A195479 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195479 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195479 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195479 RealDigits[%, 10, 100] (* (A) A195479 *)
%t A195479 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195479 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195479 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195479 RealDigits[%, 10, 100] (* (B) A195480 *)
%t A195479 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195479 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195479 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195479 RealDigits[%, 10, 100] (* (C) A195481 *)
%t A195479 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195479 RealDigits[%, 10, 100] (* Philo(ABC,G) A195482 *)
%Y A195479 Cf. A195304, A195480, A195481, A195482.
%K A195479 nonn,cons
%O A195479 1,2
%A A195479 _Clark Kimberling_, Sep 19 2011