cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195481 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).

This page as a plain text file.
%I A195481 #5 Mar 30 2012 18:57:47
%S A195481 1,3,5,6,9,1,7,4,0,3,9,3,7,7,6,0,3,6,5,7,9,2,8,0,7,7,5,9,7,6,7,0,7,8,
%T A195481 5,4,9,7,6,1,1,2,8,6,4,0,3,9,0,3,9,1,2,0,2,3,9,6,2,7,2,4,9,7,5,2,9,7,
%U A195481 0,0,4,2,7,4,9,4,9,7,9,5,3,7,5,0,6,9,6,2,0,8,5,1,9,0,4,8,6,4,8,0
%N A195481 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(2,sqrt(5),3).
%C A195481 See A195304 for definitions and a general discussion.
%e A195481 (C)=1.3569174039377603657928077597670785...
%t A195481 a = 2; b = Sqrt[5]; h = 2 a/3; k = b/3;
%t A195481 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195481 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195481 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195481 RealDigits[%, 10, 100] (* (A) A195479 *)
%t A195481 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195481 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195481 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195481 RealDigits[%, 10, 100] (* (B) A195480 *)
%t A195481 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195481 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195481 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195481 RealDigits[%, 10, 100] (* (C) A195481 *)
%t A195481 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195481 RealDigits[%, 10, 100] (* Philo(ABC,G) A195482 *)
%Y A195481 Cf. A195304.
%K A195481 nonn,cons
%O A195481 1,2
%A A195481 _Clark Kimberling_, Sep 19 2011