cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195483 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

This page as a plain text file.
%I A195483 #8 Jan 27 2018 02:29:31
%S A195483 9,0,5,3,4,7,0,9,3,0,8,3,6,4,7,2,1,7,2,3,6,0,7,6,5,7,6,7,8,5,6,8,4,5,
%T A195483 4,6,1,7,8,0,0,6,3,3,9,6,0,4,8,0,3,3,7,3,8,2,0,9,5,3,7,3,3,6,5,1,5,7,
%U A195483 8,5,9,6,6,5,7,7,8,9,2,5,8,5,0,0,9,0,3,9,2,4,7,4,0,7,0,6,2,6,8,1
%N A195483 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).
%C A195483 See A195304 for definitions and a general discussion.
%H A195483 G. C. Greubel, <a href="/A195483/b195483.txt">Table of n, a(n) for n = 0..10000</a>
%e A195483 (A)=0.90534709308364721723607657678568...
%t A195483 a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
%t A195483 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195483 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195483 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195483 RealDigits[%, 10, 100] (* (A) A195483 *)
%t A195483 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195483 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195483 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195483 RealDigits[%, 10, 100] (* (B) A195484 *)
%t A195483 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195483 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195483 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195483 RealDigits[%, 10, 100] (* (C) A195485 *)
%t A195483 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195483 RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)
%Y A195483 Cf. A195304, A195484, A195485, A195486.
%K A195483 nonn,cons
%O A195483 0,1
%A A195483 _Clark Kimberling_, Sep 19 2011