cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195484 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

This page as a plain text file.
%I A195484 #11 Jan 27 2018 02:29:03
%S A195484 1,7,0,6,0,4,6,3,5,0,3,4,4,2,3,2,4,4,2,2,8,5,4,1,9,9,0,4,0,9,8,4,7,0,
%T A195484 6,0,7,6,2,3,6,8,0,2,8,8,7,3,0,0,1,5,3,3,5,0,3,6,2,4,1,9,6,8,3,9,0,7,
%U A195484 0,1,0,6,1,2,2,0,0,2,7,4,7,9,4,9,7,7,8,4,3,2,5,8,8,0,1,6,8,6,3,5
%N A195484 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).
%C A195484 See A195304 for definitions and a general discussion.
%H A195484 G. C. Greubel, <a href="/A195484/b195484.txt">Table of n, a(n) for n = 1..10000</a>
%e A195484 (B)=1.7060463503442324422854199040984706076236802887300...
%t A195484 a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
%t A195484 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195484 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195484 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195484 RealDigits[%, 10, 100] (* (A) A195483 *)
%t A195484 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195484 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195484 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195484 RealDigits[%, 10, 100] (* (B) A195484 *)
%t A195484 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195484 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195484 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195484 RealDigits[%, 10, 100] (* (C) A195485 *)
%t A195484 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195484 RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)
%Y A195484 Cf. A195304.
%K A195484 nonn,cons
%O A195484 1,2
%A A195484 _Clark Kimberling_, Sep 19 2011