cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195485 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).

This page as a plain text file.
%I A195485 #8 Jan 27 2018 02:29:34
%S A195485 1,2,9,4,2,3,8,9,2,3,6,9,2,2,7,3,8,7,4,3,3,4,5,6,7,8,9,9,6,5,6,5,5,0,
%T A195485 5,9,4,6,4,0,8,1,9,5,8,2,9,5,1,9,7,0,1,8,3,0,3,2,9,5,3,4,0,2,4,7,2,2,
%U A195485 1,7,9,1,1,7,9,0,2,0,9,5,3,6,0,0,2,8,4,7,7,3,2,3,6,3,9,2,3,2,6,3
%N A195485 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(2),sqrt(5),sqrt(7)).
%C A195485 See A195304 for definitions and a general discussion.
%H A195485 G. C. Greubel, <a href="/A195485/b195485.txt">Table of n, a(n) for n = 1..10000</a>
%e A195485 (C)=1.294238923692273874334567899656550594640819...
%t A195485 a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3;
%t A195485 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195485 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195485 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195485 RealDigits[%, 10, 100] (* (A) A195483 *)
%t A195485 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195485 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195485 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195485 RealDigits[%, 10, 100] (* (B) A195484 *)
%t A195485 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195485 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195485 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195485 RealDigits[%, 10, 100] (* (C) A195485 *)
%t A195485 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195485 RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)
%Y A195485 Cf. A195304.
%K A195485 nonn,cons
%O A195485 1,2
%A A195485 _Clark Kimberling_, Sep 19 2011