A195486 Decimal expansion of normalized Philo sum, Philo(ABC,G), where G=centroid of the sqrt(2),sqrt(5),sqrt(7) right triangle ABC.
6, 2, 0, 3, 3, 2, 2, 7, 2, 6, 5, 3, 0, 2, 5, 8, 3, 8, 0, 5, 5, 6, 8, 6, 8, 3, 7, 2, 0, 6, 0, 7, 6, 8, 8, 6, 4, 8, 3, 6, 1, 3, 4, 8, 2, 5, 4, 2, 4, 8, 1, 9, 1, 4, 6, 1, 8, 9, 3, 2, 4, 2, 5, 0, 2, 3, 7, 3, 1, 4, 7, 9, 0, 4, 8, 7, 0, 3, 3, 4, 1, 5, 9, 1, 5, 2, 4, 7, 6, 8, 7, 4, 2, 0, 1, 3, 7, 2, 0, 9
Offset: 0
Examples
Philo(ABC,G)=.62033227265302583805568683720607688648361...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = Sqrt[2]; b = Sqrt[5]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195483 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195484 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195485 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195486 *)
Comments