A195487 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).
1, 6, 4, 8, 0, 4, 0, 7, 3, 4, 5, 9, 5, 5, 1, 8, 8, 1, 2, 3, 3, 0, 7, 4, 0, 7, 0, 0, 9, 4, 8, 4, 8, 8, 9, 2, 2, 2, 3, 4, 2, 5, 1, 2, 5, 1, 9, 9, 2, 0, 3, 5, 7, 8, 6, 0, 3, 5, 7, 3, 9, 0, 9, 3, 4, 3, 2, 9, 9, 6, 6, 9, 6, 6, 4, 8, 2, 3, 6, 9, 4, 9, 7, 1, 6, 9, 3, 2, 4, 3, 7, 6, 2, 1, 9, 6, 0, 1, 1, 7
Offset: 1
Examples
(A)=1.648040734595518812330740700...
Programs
-
Mathematica
a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195487 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195488 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 1] RealDigits[%, 10, 100] (* (C) A195489 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)
Comments