This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195488 #5 Mar 30 2012 18:57:47 %S A195488 2,6,5,9,6,8,4,7,2,2,7,6,3,0,1,5,7,8,2,8,6,9,3,1,5,8,7,6,5,0,6,1,2,3, %T A195488 1,9,7,2,2,0,9,7,7,0,3,4,5,3,4,2,9,3,4,0,4,1,2,1,6,6,2,3,1,6,8,7,6,3, %U A195488 1,8,7,1,6,8,8,0,8,1,7,7,1,2,0,1,7,2,9,6,9,9,7,2,9,4,0,2,1,0,8,3 %N A195488 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4). %C A195488 See A195304 for definitions and a general discussion. %e A195488 (B)=2.659684722763015782869315876506123197220... %t A195488 a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3; %t A195488 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195488 s = NSolve[D[f[t], t] == 0, t, 150] %t A195488 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195488 RealDigits[%, 10, 100] (* (A) A195487 *) %t A195488 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195488 s = NSolve[D[f[t], t] == 0, t, 150] %t A195488 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195488 RealDigits[%, 10, 100] (* (B) A195488 *) %t A195488 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195488 s = NSolve[D[f[t], t] == 0, t, 150] %t A195488 f3 = (f[t])^(1/2) /. Part[s, 1] %t A195488 RealDigits[%, 10, 100] (* (C) A195489 *) %t A195488 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195488 RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *) %Y A195488 Cf. A195304. %K A195488 nonn,cons %O A195488 1,1 %A A195488 _Clark Kimberling_, Sep 19 2011