cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195488 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).

This page as a plain text file.
%I A195488 #5 Mar 30 2012 18:57:47
%S A195488 2,6,5,9,6,8,4,7,2,2,7,6,3,0,1,5,7,8,2,8,6,9,3,1,5,8,7,6,5,0,6,1,2,3,
%T A195488 1,9,7,2,2,0,9,7,7,0,3,4,5,3,4,2,9,3,4,0,4,1,2,1,6,6,2,3,1,6,8,7,6,3,
%U A195488 1,8,7,1,6,8,8,0,8,1,7,7,1,2,0,1,7,2,9,6,9,9,7,2,9,4,0,2,1,0,8,3
%N A195488 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).
%C A195488 See A195304 for definitions and a general discussion.
%e A195488 (B)=2.659684722763015782869315876506123197220...
%t A195488 a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
%t A195488 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195488 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195488 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195488 RealDigits[%, 10, 100] (* (A) A195487 *)
%t A195488 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195488 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195488 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195488 RealDigits[%, 10, 100] (* (B) A195488 *)
%t A195488 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195488 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195488 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195488 RealDigits[%, 10, 100] (* (C) A195489  *)
%t A195488 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195488 RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)
%Y A195488 Cf. A195304.
%K A195488 nonn,cons
%O A195488 1,1
%A A195488 _Clark Kimberling_, Sep 19 2011