cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195489 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).

This page as a plain text file.
%I A195489 #5 Mar 30 2012 18:57:47
%S A195489 1,8,1,7,3,6,3,6,0,0,5,7,5,5,1,7,6,2,3,7,6,2,6,3,8,9,1,1,6,4,7,5,9,5,
%T A195489 6,6,8,5,4,1,3,7,5,2,6,2,5,3,1,7,7,8,7,3,9,7,1,8,3,3,8,4,8,0,5,1,0,8,
%U A195489 2,7,7,5,8,9,2,3,7,3,9,2,9,8,2,4,3,6,3,5,9,0,1,2,3,5,2,5,2,6,7,3
%N A195489 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(sqrt(7),3,4).
%C A195489 See A195304 for definitions and a general discussion.
%e A195489 (C)=1.817363600575517623762638911647...
%t A195489 a = Sqrt[7]; b = 3; h = 2 a/3; k = b/3;
%t A195489 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195489 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195489 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195489 RealDigits[%, 10, 100] (* (A) A195487 *)
%t A195489 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195489 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195489 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195489 RealDigits[%, 10, 100] (* (B) A195488 *)
%t A195489 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195489 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195489 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195489 RealDigits[%, 10, 100] (* (C) A195489  *)
%t A195489 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195489 RealDigits[%, 10, 100] (* Philo(ABC,G) A195490 *)
%Y A195489 Cf. A195304.
%K A195489 nonn,cons
%O A195489 1,2
%A A195489 _Clark Kimberling_, Sep 19 2011