cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195491 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

This page as a plain text file.
%I A195491 #5 Mar 30 2012 18:57:47
%S A195491 6,2,9,5,8,1,0,6,1,3,8,7,7,1,6,0,4,4,0,4,5,4,9,5,8,7,5,6,8,8,5,4,0,6,
%T A195491 9,2,2,3,1,6,8,4,9,0,8,3,8,6,6,0,7,0,2,9,6,5,1,1,2,3,1,3,4,9,6,2,5,2,
%U A195491 6,6,6,5,0,5,1,3,5,9,2,3,4,6,8,8,9,9,4,9,2,9,6,9,8,9,0,2,8,7,6,7
%N A195491 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
%C A195491 See A195304 for definitions and a general discussion.
%e A195491 (A)=0.62958106138771604404549587568854069...
%t A195491 a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
%t A195491 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195491 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195491 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195491 RealDigits[%, 10, 100] (* (A) A195491 *)
%t A195491 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195491 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195491 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195491 RealDigits[%, 10, 100] (* (B) A195492 *)
%t A195491 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195491 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195491 f3 = (f[t])^(1/2) /. Part[s, 4]
%t A195491 RealDigits[%, 10, 100] (* (C) A195493 *)
%t A195491 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195491 RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)
%Y A195491 Cf. A195304, A195492, A195493, A195494.
%K A195491 nonn,cons
%O A195491 0,1
%A A195491 _Clark Kimberling_, Sep 19 2011