This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195491 #5 Mar 30 2012 18:57:47 %S A195491 6,2,9,5,8,1,0,6,1,3,8,7,7,1,6,0,4,4,0,4,5,4,9,5,8,7,5,6,8,8,5,4,0,6, %T A195491 9,2,2,3,1,6,8,4,9,0,8,3,8,6,6,0,7,0,2,9,6,5,1,1,2,3,1,3,4,9,6,2,5,2, %U A195491 6,6,6,5,0,5,1,3,5,9,2,3,4,6,8,8,9,9,4,9,2,9,6,9,8,9,0,2,8,7,6,7 %N A195491 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio). %C A195491 See A195304 for definitions and a general discussion. %e A195491 (A)=0.62958106138771604404549587568854069... %t A195491 a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3; %t A195491 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 %t A195491 s = NSolve[D[f[t], t] == 0, t, 150] %t A195491 f1 = (f[t])^(1/2) /. Part[s, 4] %t A195491 RealDigits[%, 10, 100] (* (A) A195491 *) %t A195491 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 %t A195491 s = NSolve[D[f[t], t] == 0, t, 150] %t A195491 f2 = (f[t])^(1/2) /. Part[s, 4] %t A195491 RealDigits[%, 10, 100] (* (B) A195492 *) %t A195491 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 %t A195491 s = NSolve[D[f[t], t] == 0, t, 150] %t A195491 f3 = (f[t])^(1/2) /. Part[s, 4] %t A195491 RealDigits[%, 10, 100] (* (C) A195493 *) %t A195491 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) %t A195491 RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *) %Y A195491 Cf. A195304, A195492, A195493, A195494. %K A195491 nonn,cons %O A195491 0,1 %A A195491 _Clark Kimberling_, Sep 19 2011