cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195492 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).

This page as a plain text file.
%I A195492 #7 Nov 26 2024 21:00:16
%S A195492 1,0,6,8,4,7,3,0,1,7,1,9,8,6,1,0,0,3,5,7,5,3,9,8,2,0,2,5,9,9,5,6,9,6,
%T A195492 7,6,0,9,5,0,5,7,8,8,0,8,5,2,8,7,9,5,2,7,3,0,6,8,4,1,0,7,5,1,9,4,3,6,
%U A195492 2,1,9,6,3,2,3,0,8,7,8,6,8,7,7,9,0,6,8,1,0,2,4,5,0,6,6,9,5,6,1,4
%N A195492 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
%C A195492 See A195304 for definitions and a general discussion.
%H A195492 <a href="/index/Al#algebraic_08">Index entries for algebraic numbers, degree 8</a>
%e A195492 (B)=1.0684730171986100357539820259956...
%t A195492 a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3;
%t A195492 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195492 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195492 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195492 RealDigits[%, 10, 100] (* (A) A195491 *)
%t A195492 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195492 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195492 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195492 RealDigits[%, 10, 100] (* (B) A195492 *)
%t A195492 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195492 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195492 f3 = (f[t])^(1/2) /. Part[s, 4]
%t A195492 RealDigits[%, 10, 100] (* (C) A195493 *)
%t A195492 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195492 RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)
%o A195492 (PARI) polrootsreal(3464*x^8 - 16028*x^7 + 40544*x^6 + 47079*x^5 - 64883*x^4 + 50115*x^3 - 43008*x^2 - 60658*x + 32292)[4] \\ _Charles R Greathouse IV_, Nov 26 2024
%Y A195492 Cf. A195304.
%K A195492 nonn,cons
%O A195492 1,3
%A A195492 _Clark Kimberling_, Sep 19 2011