A195493 Decimal expansion of shortest length, (C), of segment from side CA through centroid to side CB in right triangle ABC with sidelengths (a,b,c)=(1,sqrt(r),r), where r=(1+sqrt(5))/2 (the golden ratio).
7, 5, 9, 3, 1, 0, 7, 7, 8, 3, 7, 3, 7, 3, 4, 9, 5, 6, 8, 1, 1, 8, 4, 2, 6, 9, 0, 4, 9, 7, 7, 6, 7, 3, 6, 8, 7, 0, 2, 8, 5, 5, 3, 5, 3, 7, 4, 8, 7, 0, 3, 2, 3, 0, 0, 0, 4, 2, 2, 3, 8, 7, 9, 7, 5, 8, 9, 9, 1, 7, 4, 6, 7, 7, 7, 2, 2, 6, 0, 4, 6, 7, 1, 3, 9, 8, 3, 0, 8, 0, 4, 2, 3, 1, 3, 3, 2, 0, 1, 1
Offset: 0
Examples
(C)=0.759310778373734956811842690497767...
Crossrefs
Cf. A195304.
Programs
-
Mathematica
a = 1; b = Sqrt[GoldenRatio]; h = 2 a/3; k = b/3; f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f1 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (A) A195491 *) f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2 s = NSolve[D[f[t], t] == 0, t, 150] f2 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (B) A195492 *) f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2 s = NSolve[D[f[t], t] == 0, t, 150] f3 = (f[t])^(1/2) /. Part[s, 4] RealDigits[%, 10, 100] (* (C) A195493 *) c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c) RealDigits[%, 10, 100] (* Philo(ABC,G) A195494 *)
Comments