cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195495 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).

This page as a plain text file.
%I A195495 #5 Mar 30 2012 18:57:47
%S A195495 4,0,5,1,7,7,8,2,9,7,2,0,5,7,1,7,7,7,8,8,0,3,0,7,3,9,4,9,8,0,5,1,4,5,
%T A195495 8,4,6,8,8,3,2,3,9,3,7,4,0,8,9,2,3,7,6,9,9,0,7,8,5,6,5,8,0,7,3,8,9,5,
%U A195495 8,9,0,4,6,6,4,6,2,1,3,2,6,2,2,8,4,4,7,6,8,9,3,7,6,0,2,9,7,1,8,5
%N A195495 Decimal expansion of shortest length, (A), of segment from side AB through centroid to side AC in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
%C A195495 See A195304 for definitions and a general discussion.
%e A195495 (A)=0.40517782972057177788030739498051458468832393740...
%t A195495 a = b - 1; b = GoldenRatio; h = 2 a/3; k = b/3;
%t A195495 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195495 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195495 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195495 RealDigits[%, 10, 100] (* (A) A195495 *)
%t A195495 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195495 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195495 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195495 RealDigits[%, 10, 100] (* (B) A195496 *)
%t A195495 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195495 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195495 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195495 RealDigits[%, 10, 100] (* (C) A195497 *)
%t A195495 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195495 RealDigits[%, 10, 100] (* Philo(ABC,G) A195498 *)
%Y A195495 Cf. A195304, A195496, A195497, A195498.
%K A195495 nonn,cons
%O A195495 0,1
%A A195495 _Clark Kimberling_, Sep 19 2011