cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195496 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).

This page as a plain text file.
%I A195496 #5 Mar 30 2012 18:57:47
%S A195496 1,0,1,7,1,5,3,4,4,6,7,5,4,8,0,4,4,6,6,2,5,6,7,9,8,1,8,7,8,1,6,6,0,6,
%T A195496 3,3,6,9,7,4,3,6,7,9,8,2,5,5,3,7,4,6,3,9,5,6,4,0,3,4,9,5,5,6,1,7,5,7,
%U A195496 7,6,1,4,7,5,2,9,8,5,3,2,8,9,2,4,2,4,6,6,6,3,7,8,4,1,8,4,8,3,0,3
%N A195496 Decimal expansion of shortest length, (B), of segment from side BC through centroid to side BA in right triangle ABC with sidelengths (a,b,c)=(r-1,r,sqrt(3)), where r=(1+sqrt(5))/2 (the golden ratio).
%C A195496 See A195304 for definitions and a general discussion.
%e A195496 (B)=1.017153446754804466256798187816606336...
%t A195496 a = b - 1; b = GoldenRatio; h = 2 a/3; k = b/3;
%t A195496 f[t_] := (t - a)^2 + ((t - a)^2) ((a*k - b*t)/(a*h - a*t))^2
%t A195496 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195496 f1 = (f[t])^(1/2) /. Part[s, 4]
%t A195496 RealDigits[%, 10, 100] (* (A) A195495 *)
%t A195496 f[t_] := (t - a)^2 + ((t - a)^2) (k/(h - t))^2
%t A195496 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195496 f2 = (f[t])^(1/2) /. Part[s, 4]
%t A195496 RealDigits[%, 10, 100] (* (B) A195496 *)
%t A195496 f[t_] := (b*t/a)^2 + ((b*t/a)^2) ((a*h - a*t)/(b*t - a*k))^2
%t A195496 s = NSolve[D[f[t], t] == 0, t, 150]
%t A195496 f3 = (f[t])^(1/2) /. Part[s, 1]
%t A195496 RealDigits[%, 10, 100] (* (C) A195497 *)
%t A195496 c = Sqrt[a^2 + b^2]; (f1 + f2 + f3)/(a + b + c)
%t A195496 RealDigits[%, 10, 100] (* Philo(ABC,G) A195498 *)
%Y A195496 Cf. A195304.
%K A195496 nonn,cons
%O A195496 1,4
%A A195496 _Clark Kimberling_, Sep 19 2011