This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195499 #27 Oct 24 2018 04:58:25 %S A195499 3,8,33,120,451,1680,6273,23408,87363,326040,1216801,4541160,16947843, %T A195499 63250208,236052993,880961760,3287794051,12270214440,45793063713, %U A195499 170902040408,637815097923,2380358351280,8883618307201,33154114877520 %N A195499 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(3). %C A195499 See A195500 for a discussion and references. %C A195499 Apparently a(n) = A120892(n+1) for 1 <= n <= 24. - _Georg Fischer_, Oct 24 2018 %F A195499 Empirical G.f.: x*(3-x)/(1-3*x-3*x^2+x^3). - _Colin Barker_, Jan 04 2012 %e A195499 From the Pythagorean triples (3,4,5), (8,15,17),(33,56,65), (120,209,241), (451,780,901), read the first five best approximating fractions b(n)/a(n): %e A195499 4/3, 15/8, 56/33, 209/120, 780/451. %t A195499 r = Sqrt[3]; z = 25; %t A195499 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195499 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195499 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195499 Array[FromContinuedFraction[ %t A195499 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195499 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195499 p[{r, z}]] (* A195499, A195503 *) %t A195499 Sqrt[a^2 + b^2] (* A195531 *) %t A195499 (* by _Peter J. C. Moses_, Sep 02 2011 *) %Y A195499 Cf. A120892, A195500, A195503, A195531. %K A195499 nonn,easy,frac %O A195499 1,1 %A A195499 _Clark Kimberling_, Sep 20 2011