cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195522 T(n,k) = Number of lower triangles of an n X n -k..k array with all row and column sums zero.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 5, 15, 1, 1, 7, 65, 199, 1, 1, 9, 175, 3753, 6247, 1, 1, 11, 369, 27267, 860017, 505623, 1, 1, 13, 671, 121367, 23663523, 839301197, 105997283, 1, 1, 15, 1105, 401565, 286168923, 122092290831, 3535646416019, 58923059879, 1, 1, 17
Offset: 1

Views

Author

R. H. Hardin, Sep 20 2011

Keywords

Comments

Table starts
....1......1........1.........1..........1...........1...........1.......1....1
....1......1........1.........1..........1...........1...........1.......1....1
....3......5........7.........9.........11..........13..........15......17...19
...15.....65......175.......369........671........1105........1695....2465.3439
..199...3753....27267....121367.....401565.....1089411.....2563933.5423365
.6247.860017.23663523.286168923.2106810049.11131321791.46387885537

Examples

			Some solutions for n=5 k=6
..0..........0..........0..........0..........0..........0..........0
..0.0.......-2.2........6-6.......-1.1........5-5.......-4.4.......-4.4
.-1.3-2.....-6.0.6.....-6.6.0.....-1.5-4.....-6.4.2......3-6.3.....-4.1.3
..6-3-2-1....4-4-4.4....5.3-5-3....0-5.3.2....0.4-3-1...-5.5.1-1....5-2-4.1
.-5.0.4.1.0..4.2-2-4.0.-5-3.5.3.0..2-1.1-2.0..1-3.1.1.0..6-3-4.1.0..3-3.1-1.0
		

Crossrefs

Row 4 is A005917(n+1).

Formula

Empirical for rows:
T(2,k) = 1
T(3,k) = 2*k + 1
T(4,k) = 4*k^3 + 6*k^2 + 4*k + 1
T(5,k) = (643/45)*k^6 + (643/15)*k^5 + (2165/36)*k^4 + (293/6)*k^3 + (4423/180)*k^2 + (73/10)*k + 1
T(6,k) = (7389349/90720)*k^10 + (7389349/18144)*k^9 + (836251/864)*k^8 + (4318165/3024)*k^7 + (6254923/4320)*k^6 + (4563293/4320)*k^5 + (10247161/18144)*k^4 + (249983/1134)*k^3 + (21959/360)*k^2 + (3469/315)*k + 1