A195522 T(n,k) = Number of lower triangles of an n X n -k..k array with all row and column sums zero.
1, 1, 1, 1, 1, 3, 1, 1, 5, 15, 1, 1, 7, 65, 199, 1, 1, 9, 175, 3753, 6247, 1, 1, 11, 369, 27267, 860017, 505623, 1, 1, 13, 671, 121367, 23663523, 839301197, 105997283, 1, 1, 15, 1105, 401565, 286168923, 122092290831, 3535646416019, 58923059879, 1, 1, 17
Offset: 1
Examples
Some solutions for n=5 k=6 ..0..........0..........0..........0..........0..........0..........0 ..0.0.......-2.2........6-6.......-1.1........5-5.......-4.4.......-4.4 .-1.3-2.....-6.0.6.....-6.6.0.....-1.5-4.....-6.4.2......3-6.3.....-4.1.3 ..6-3-2-1....4-4-4.4....5.3-5-3....0-5.3.2....0.4-3-1...-5.5.1-1....5-2-4.1 .-5.0.4.1.0..4.2-2-4.0.-5-3.5.3.0..2-1.1-2.0..1-3.1.1.0..6-3-4.1.0..3-3.1-1.0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..75
Crossrefs
Row 4 is A005917(n+1).
Formula
Empirical for rows:
T(2,k) = 1
T(3,k) = 2*k + 1
T(4,k) = 4*k^3 + 6*k^2 + 4*k + 1
T(5,k) = (643/45)*k^6 + (643/15)*k^5 + (2165/36)*k^4 + (293/6)*k^3 + (4423/180)*k^2 + (73/10)*k + 1
T(6,k) = (7389349/90720)*k^10 + (7389349/18144)*k^9 + (836251/864)*k^8 + (4318165/3024)*k^7 + (6254923/4320)*k^6 + (4563293/4320)*k^5 + (10247161/18144)*k^4 + (249983/1134)*k^3 + (21959/360)*k^2 + (3469/315)*k + 1
Comments