A195523 Number of lower triangles of a 5 X 5 -n..n array with all row and column sums zero.
199, 3753, 27267, 121367, 401565, 1089411, 2563933, 5423365, 10557163, 19228309, 33165903, 54668043, 86714993, 133092639, 198526233, 288824425, 411033583, 573602401, 786556795, 1061685087, 1412733477, 1855611803, 2408609589
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..........0..........0..........0..........0..........0..........0 ..0.0.......-2.2.......-3.3........0.0.......-3.3........3-3........3-3 ..0-3.3.....-2.4-2.....-2-1.3......2-2.0......0-1.1.....-3.0.3......2.0-2 ..0.3.0-3....2-2.4-4....4-1-4.1....0-1.2-1....1.0-1.0....4-1.1-4...-4-1.4.1 ..0.0-3.3.0..2-4-2.4.0..1-1.1-1.0.-2.3-2.1.0..2-2.0.0.0.-4.4-4.4.0.-1.4-2-1.0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..175
Crossrefs
Cf. A195522.
Formula
Empirical: a(n) = (643/45)*n^6 + (643/15)*n^5 + (2165/36)*n^4 + (293/6)*n^3 + (4423/180)*n^2 + (73/10)*n + 1.
Conjectures from Colin Barker, May 08 2018: (Start)
G.f.: x*(199 + 2360*x + 5175*x^2 + 2346*x^3 + 213*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
Comments