cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195523 Number of lower triangles of a 5 X 5 -n..n array with all row and column sums zero.

Original entry on oeis.org

199, 3753, 27267, 121367, 401565, 1089411, 2563933, 5423365, 10557163, 19228309, 33165903, 54668043, 86714993, 133092639, 198526233, 288824425, 411033583, 573602401, 786556795, 1061685087, 1412733477, 1855611803, 2408609589
Offset: 1

Views

Author

R. H. Hardin, Sep 20 2011

Keywords

Comments

Row 5 of A195522.

Examples

			Some solutions for n=4:
..0..........0..........0..........0..........0..........0..........0
..0.0.......-2.2.......-3.3........0.0.......-3.3........3-3........3-3
..0-3.3.....-2.4-2.....-2-1.3......2-2.0......0-1.1.....-3.0.3......2.0-2
..0.3.0-3....2-2.4-4....4-1-4.1....0-1.2-1....1.0-1.0....4-1.1-4...-4-1.4.1
..0.0-3.3.0..2-4-2.4.0..1-1.1-1.0.-2.3-2.1.0..2-2.0.0.0.-4.4-4.4.0.-1.4-2-1.0
		

Crossrefs

Cf. A195522.

Formula

Empirical: a(n) = (643/45)*n^6 + (643/15)*n^5 + (2165/36)*n^4 + (293/6)*n^3 + (4423/180)*n^2 + (73/10)*n + 1.
Conjectures from Colin Barker, May 08 2018: (Start)
G.f.: x*(199 + 2360*x + 5175*x^2 + 2346*x^3 + 213*x^4 - 6*x^5 + x^6) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)