This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195527 #12 Jul 28 2016 21:15:51 %S A195527 15,21,28,51,55,64,70,75,78,91,96,100,111,112,117,126,135,136,141,144, %T A195527 145,148,154,156,165,175,176,186,189,195,201,204,216,232,235,238,246, %U A195527 255,256,285,286,288,291,297,300,306,315,316,321,322,324,330,333,336 %N A195527 Integers n that are k-gonal for precisely 3 distinct values of k, where k >= 3. %C A195527 See A177025 for number of ways a number can be represented as a polygonal number. %H A195527 Chai Wah Wu, <a href="/A195527/b195527.txt">Table of n, a(n) for n = 1..10000</a> %e A195527 21 is in the sequence because it is a triangular number (A000217), an octagonal number (A000567) and an icosihenagonal number (A051873). %t A195527 data1=Reduce[1/2 n (n(k-2)+4-k)== # && k>=3 && n>0, {k,n}, Integers]&/@Range[336]; data2=If[Head[#]===And, 1, Length[#]] &/@data1; data3=DeleteCases[Table[If[data2[[k]]==3, k], {k, 1, Length[data2]}], Null] %o A195527 (Python) %o A195527 A195527_list = [] %o A195527 for m in range(1,10**4): %o A195527 n, c = 3, 0 %o A195527 while n*(n+1) <= 2*m: %o A195527 if not 2*(n*(n-2) + m) % (n*(n - 1)): %o A195527 c += 1 %o A195527 if c > 2: %o A195527 break %o A195527 n += 1 %o A195527 if c == 2: %o A195527 A195527_list.append(m) # _Chai Wah Wu_, Jul 28 2016 %Y A195527 Cf. A000217, A000567, A051873, A177025, A177029. %K A195527 nonn %O A195527 1,1 %A A195527 _Ant King_, Sep 21 2011