cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195532 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(5).

This page as a plain text file.
%I A195532 #11 Dec 07 2016 10:32:28
%S A195532 8,5,84,2400,1691,11480,118455,352692,1401961,1663145124,1802526192,
%T A195532 15798984680,297278169720,1479041362764,1551248530483,42254295673488,
%U A195532 1445285680561323,28154300465964144,49087267967218280,373205366478956820
%N A195532 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(5).
%C A195532 See A195500 for a discussion and references.
%t A195532 r = Sqrt[5]; z = 24;
%t A195532 p[{f_,  n_}] := (#1[[2]]/#1[[
%t A195532       1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
%t A195532          2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
%t A195532      Array[FromContinuedFraction[
%t A195532         ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
%t A195532 {a, b} = ({Denominator[#1], Numerator[#1]} &)[
%t A195532   p[{r, z}]]  (* A195532, A195533 *)
%t A195532 Sqrt[a^2 + b^2] (* A195534 *)
%t A195532 (* by _Peter J. C. Moses_, Sep 02 2011 *)
%Y A195532 Cf. A195500, A195533, A195534.
%K A195532 nonn,frac
%O A195532 1,1
%A A195532 _Clark Kimberling_, Sep 20 2011