cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195535 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(6).

This page as a plain text file.
%I A195535 #12 Dec 07 2016 10:33:04
%S A195535 5,1020,2247,2633277900,2640162496,638843546289,1396487515808,
%T A195535 6103353023795,21860678072520,82495605773137,29466852345019792,
%U A195535 34041728665663572,292320946605948260,262936589866701605,3964118460886936896
%N A195535 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(6).
%C A195535 See A195500 for a discussion and references.
%t A195535 r = Sqrt[6]; z = 18;
%t A195535 p[{f_, n_}] := (#1[[2]]/#1[[
%t A195535       1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
%t A195535          2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
%t A195535      Array[FromContinuedFraction[
%t A195535         ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
%t A195535 {a, b} = ({Denominator[#1], Numerator[#1]} &)[
%t A195535   p[{r, z}]]  (* A195535, A195536 *)
%t A195535 Sqrt[a^2 + b^2] (* A195537 *)
%t A195535 (* _Peter J. C. Moses_, Sep 02 2011 *)
%Y A195535 Cf. A195500, A195536, A195537.
%K A195535 nonn,frac
%O A195535 1,1
%A A195535 _Clark Kimberling_, Sep 20 2011