cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195538 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).

This page as a plain text file.
%I A195538 #15 Dec 07 2016 10:33:26
%S A195538 5,12,145,420,4901,14280,166465,485112,5654885,16479540,192099601,
%T A195538 559819260,6525731525,19017375312,221682772225,646030941360,
%U A195538 7530688524101,21946034630940,255821727047185,745519146510612,8690408031080165
%N A195538 Denominators a(n) of Pythagorean approximations b(n)/a(n) to sqrt(8).
%C A195538 See A195500 for a discussion and references.
%C A195538 Conjecture: a(n) = 35*a(n-2) - 35*a(n-4) + a(n-6) with bisections A098602 and A076218. - _R. J. Mathar_, Sep 21 2011
%t A195538 r = Sqrt[8]; z = 24;
%t A195538 p[{f_, n_}] := (#1[[2]]/#1[[
%t A195538       1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[
%t A195538          2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[
%t A195538      Array[FromContinuedFraction[
%t A195538         ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]];
%t A195538 {a, b} = ({Denominator[#1], Numerator[#1]} &)[
%t A195538   p[{r, z}]]  (* A195538, A195539 *)
%t A195538 Sqrt[a^2 + b^2] (* A195540 *)
%t A195538 (* _Peter J. C. Moses_, Sep 02 2011 *)
%Y A195538 Cf. A195500, A195539, A195540.
%K A195538 nonn,frac
%O A195538 1,1
%A A195538 _Clark Kimberling_, Sep 20 2011