This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195547 #40 Jul 21 2018 03:18:42 %S A195547 1,4,12,15,80,208,273,1428,3740,4895,25632,67104,87841,459940,1204140, %T A195547 1576239,8253296,21607408,28284465,148099380,387729212,507544127, %U A195547 2657535552,6957518400,9107509825,47687540548,124847601996,163427632719,855718194320,2240299317520 %N A195547 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/2. %C A195547 See A195500 for a discussion and references. %C A195547 a(n) is the numerator of the harmonic mean of F(n) and F(n+1), where F = A000045 (Fibonacci numbers). Example: 2*F(9)*F(10)/(F(9)+F(10)) = 2*34*55/(34+55) = 3740/89, therefore a(9) = 3740. - _Francesco Daddi_, Jul 04 2018 %H A195547 Vincenzo Librandi, <a href="/A195547/b195547.txt">Table of n, a(n) for n = 1..1000</a> %F A195547 a(n) = 2*F(n)*F(n+1)/(2-((n+2)^2 mod 3)), where F(n)=Fibonacci(n). - _Gary Detlefs_, Oct 15 2011 %F A195547 Empirical G.f.: x*(1+4*x+12*x^2-2*x^3+12*x^4+4*x^5+x^6)/(1-17*x^3-17*x^6+x^9). - _Colin Barker_, Apr 15 2012 %t A195547 r = 1/2; z = 30; %t A195547 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195547 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195547 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195547 Array[FromContinuedFraction[ %t A195547 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195547 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195547 p[{r, z}]] (* A195547, A195548 *) %t A195547 Sqrt[a^2 + b^2] (* A195549 *) %t A195547 (* _Peter J. C. Moses_, Sep 02 2011 *) %t A195547 Table[Numerator[2 Fibonacci[n] Fibonacci[n+1] / ( Fibonacci[n] + Fibonacci[n+1])], {n, 1, 40}] (* _Vincenzo Librandi_, Jul 21 2018 *) %Y A195547 Cf. A195500, A195548, A195549, A131534. %K A195547 nonn,frac %O A195547 1,2 %A A195547 _Clark Kimberling_, Sep 20 2011