This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195556 #19 Jun 04 2015 14:29:29 %S A195556 1,12,24,35,468,900,1333,17760,34188,50615,674424,1298232,1922041, %T A195556 25610340,49298640,72986939,972518508,1872050076,2771581645, %U A195556 36930092952,71088604260,105247115567,1402371013680,2699494911792,3996618809905 %N A195556 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/3. %C A195556 See A195500 for a discussion and references. %F A195556 Conjecture: a(n) = 37*a(n-3) + 37*a(n-6) - a(n-9). - _R. J. Mathar_, Sep 21 2011 %F A195556 Empirical g.f.: x*(x^6+12*x^5+24*x^4-2*x^3+24*x^2+12*x+1) / (x^9-37*x^6-37*x^3+1). - _Colin Barker_, Jun 04 2015 %t A195556 r = 1/3; z = 27; %t A195556 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195556 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195556 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195556 Array[FromContinuedFraction[ %t A195556 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195556 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195556 p[{r, z}]] (* A195556, A195557 *) %t A195556 Sqrt[a^2 + b^2] (* A195558 *) %t A195556 (* _Peter J. C. Moses_, Sep 02 2011 *) %Y A195556 Cf. A195500, A195557, A195558. %K A195556 nonn %O A195556 1,2 %A A195556 _Clark Kimberling_, Sep 21 2011