This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195562 #16 Jun 04 2015 14:31:58 %S A195562 1,24,40,63,1600,2624,4161,105560,173160,274559,6965376,11425920, %T A195562 18116737,459609240,753937576,1195430079,30327244480,49748454080, %U A195562 78880268481,2001138526424,3282644031720,5204902289663,132044815499520 %N A195562 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/4. %C A195562 See A195500 for a discussion and references. %F A195562 Conjecture: a(n) = 65*a(n-3) + 65*a(n-6) - a(n-9). - _R. J. Mathar_, Sep 21 2011 %F A195562 Empirical g.f.: x*(x^6+24*x^5+40*x^4-2*x^3+40*x^2+24*x+1) / (x^9-65*x^6-65*x^3+1). - _Colin Barker_, Jun 04 2015 %t A195562 Remove["Global`*"]; %t A195562 r = 1/4; z = 26; %t A195562 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195562 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195562 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195562 Array[FromContinuedFraction[ %t A195562 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195562 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195562 p[{r, z}]] (* A195562, A195563 *) %t A195562 Sqrt[a^2 + b^2] (* A195564 *) %t A195562 (* _Peter J. C. Moses_, Sep 02 2011 *) %Y A195562 Cf. A195500, A195563, A195564. %K A195562 nonn %O A195562 1,2 %A A195562 _Clark Kimberling_, Sep 21 2011