A195568 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 7/4.
3, 8, 120, 637, 2176, 30848, 164483, 561288, 7958776, 42435837, 144810240, 2053333248, 10948281603, 37360480520, 529752019320, 2824614217597, 9638859164032, 136673967651200, 728739519858563, 2486788303839624, 35261353901990392
Offset: 1
Keywords
Programs
-
Mathematica
r = 7/4; z = 26; p[{f_, n_}] := (#1[[2]]/#1[[ 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ Array[FromContinuedFraction[ ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; {a, b} = ({Denominator[#1], Numerator[#1]} &)[ p[{r, z}]] (* A195568, A195569 *) Sqrt[a^2 + b^2] (* A195570 *) (* Peter J. C. Moses, Sep 02 2011 *)
Formula
Empirical g.f.: x*(3*x^6+8*x^5+120*x^4-134*x^3+120*x^2+8*x+3) / (x^9-257*x^6-257*x^3+1). - Colin Barker, Jun 04 2015
Comments