This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195571 #16 Jun 05 2015 03:20:05 %S A195571 1,40,60,99,4100,6100,10101,418140,622160,1030199,42646200,63454200, %T A195571 105070201,4349494240,6471706260,10716130299,443605766300, %U A195571 660050584300,1092940220301,45243438668340,67318687892360,111469186340399,4614387138404400 %N A195571 Denominators a(n) of Pythagorean approximations b(n)/a(n) to 1/5. %C A195571 See A195500 for a discussion and references. %F A195571 Conjecture: a(n) = 101*a(n-3) + 101*a(n-6) - a(n-9). - _R. J. Mathar_, Sep 21 2011 %F A195571 Empirical g.f.: x*(x^6+40*x^5+60*x^4-2*x^3+60*x^2+40*x+1) / (x^9-101*x^6-101*x^3+1). - _Colin Barker_, Jun 04 2015 %t A195571 r = 1/5; z = 26; %t A195571 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195571 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195571 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195571 Array[FromContinuedFraction[ %t A195571 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195571 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195571 p[{r, z}]] (* A195571, A195572 *) %t A195571 Sqrt[a^2 + b^2] (* A195573 *) %t A195571 (* _Peter J. C. Moses_, Sep 02 2011 *) %Y A195571 Cf. A195500, A195572, A195573. %K A195571 nonn %O A195571 1,2 %A A195571 _Clark Kimberling_, Sep 21 2011