This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195581 #56 Feb 22 2022 16:15:13 %S A195581 1,0,1,0,0,2,0,0,2,4,0,0,0,16,8,0,0,0,40,64,16,0,0,0,80,400,208,32,0, %T A195581 0,0,80,2240,2048,608,64,0,0,0,0,11360,18816,8352,1664,128,0,0,0,0, %U A195581 55040,168768,104448,30016,4352,256,0,0,0,0,253440,1508032,1277568,479040,99200,11008,512 %N A195581 Number T(n,k) of permutations of {1,2,...,n} that result in a binary search tree of height k; triangle T(n,k), n>=0, 0<=k<=n, read by rows. %C A195581 Empty external nodes are counted in determining the height of a search tree. %H A195581 Alois P. Heinz, <a href="/A195581/b195581.txt">Rows n = 0..140, flattened</a> %H A195581 Wikipedia, <a href="https://en.wikipedia.org/wiki/Binary_search_tree">Binary search tree</a> %H A195581 <a href="/index/Ro#rooted">Index entries for sequences related to rooted trees</a> %H A195581 <a href="/index/Tra#trees">Index entries for sequences related to trees</a> %F A195581 Sum_{k=0..n} k * T(n,k) = A316944(n). %F A195581 Sum_{k=n..2^n-1} k * T(k,n) = A317012(n). %e A195581 T(3,3) = 4, because 4 permutations of {1,2,3} result in a binary search tree of height 3: %e A195581 (1,2,3): 1 (1,3,2): 1 (3,1,2): 3 (3,2,1): 3 %e A195581 / \ / \ / \ / \ %e A195581 o 2 o 3 1 o 2 o %e A195581 / \ / \ / \ / \ %e A195581 o 3 2 o o 2 1 o %e A195581 / \ / \ / \ / \ %e A195581 o o o o o o o o %e A195581 Triangle T(n,k) begins: %e A195581 1; %e A195581 0, 1; %e A195581 0, 0, 2; %e A195581 0, 0, 2, 4; %e A195581 0, 0, 0, 16, 8; %e A195581 0, 0, 0, 40, 64, 16; %e A195581 0, 0, 0, 80, 400, 208, 32; %e A195581 0, 0, 0, 80, 2240, 2048, 608, 64; %e A195581 0, 0, 0, 0, 11360, 18816, 8352, 1664, 128; %e A195581 0, 0, 0, 0, 55040, 168768, 104448, 30016, 4352, 256; %e A195581 0, 0, 0, 0, 253440, 1508032, 1277568, 479040, 99200, 11008, 512; %e A195581 ... %p A195581 b:= proc(n, k) option remember; `if`(n<2, `if`(k<n, 0, 1), %p A195581 add(binomial(n-1, r)*b(r, k-1)*b(n-1-r, k-1), r=0..n-1)) %p A195581 end: %p A195581 T:= (n, k)-> b(n, k)-b(n, k-1): %p A195581 seq(seq(T(n, k), k=0..n), n=0..10); %t A195581 b[n_, k_] := b[n, k] = If[n == 0, 1, If[n == 1, If[k > 0, 1, 0], Sum[Binomial[n-1, r-1]*b[r-1, k-1]*b[n-r, k-1], {r, 1, n}] ] ]; t [n_, k_] := b[n, k] - If[k > 0, b[n, k-1], 0]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* _Jean-François Alcover_, Dec 17 2013, translated from Maple *) %Y A195581 Row sums give A000142. Column sums give A227822. %Y A195581 Main diagonal gives A011782, lower diagonal gives A076616. %Y A195581 T(n,A000523(n)+1) = A076615(n). %Y A195581 T(2^n-1,n) = A056972(n). %Y A195581 T(2n,n) = A265846(n). %Y A195581 Cf. A195582, A195583, A244108 (the same read by columns), A316944, A317012. %K A195581 nonn,tabl %O A195581 0,6 %A A195581 _Alois P. Heinz_, Sep 20 2011