This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195615 #20 Aug 16 2025 17:16:51 %S A195615 15,273,4895,87841,1576239,28284465,507544127,9107509825,163427632719, %T A195615 2932589879121,52623190191455,944284833567073,16944503814015855, %U A195615 304056783818718321,5456077604922913919,97905340104793732225,1756840044281364266127,31525215456959763058065 %N A195615 Numerators b(n) of Pythagorean approximations b(n)/a(n) to 2. %C A195615 See A195500 for discussion and list of related sequences; see A195614 for Mathematica program. %H A195615 Colin Barker, <a href="/A195615/b195615.txt">Table of n, a(n) for n = 1..797</a> %H A195615 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (17,17,-1). %F A195615 From _Colin Barker_, Jun 04 2015: (Start) %F A195615 a(n) = 17*a(n-1) + 17*a(n-2) - a(n-3). %F A195615 G.f.: x*(15 + 18*x - x^2)/((1+x)*(1-18*x+x^2)). (End) %F A195615 a(n) = ((-1)^n + (2+sqrt(5))*(9+4*sqrt(5))^n + (2-sqrt(5))*(9+4*sqrt(5))^(-n))/5. - _Colin Barker_, Mar 04 2016 %F A195615 From _G. C. Greubel_, Feb 13 2023: (Start) %F A195615 a(n) = Fibonacci(3*n+1)*Fibonacci(3*n+2). %F A195615 a(n) = (1/5)*(4*A049629(n) + (-1)^n - 5*[n=0]). (End) %t A195615 LinearRecurrence[{17,17,-1}, {15,273,4895}, 40] (* _G. C. Greubel_, Feb 13 2023 *) %o A195615 (PARI) Vec(x*(15+18*x-x^2)/((1+x)*(1-18*x+x^2)) + O(x^50)) \\ _Colin Barker_, Jun 04 2015 %o A195615 (Magma) [Fibonacci(3*n+1)*Fibonacci(3*n+2): n in [1..40]]; // _G. C. Greubel_, Feb 13 2023 %o A195615 (SageMath) [fibonacci(3*n+1)*fibonacci(3*n+2) for n in range(1,41)] # _G. C. Greubel_, Feb 13 2023 %Y A195615 Cf. A000045, A007805, A049629, A195500, A195614. %K A195615 nonn,easy %O A195615 1,1 %A A195615 _Clark Kimberling_, Sep 22 2011