This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195616 #23 Feb 16 2023 14:52:29 %S A195616 12,444,16872,640680,24328980,923860548,35082371856,1332206269968, %T A195616 50588755886940,1921040517433740,72948950906595192, %U A195616 2770139093933183544,105192336618554379492,3994538652411133237140,151687276455004508631840 %N A195616 Denominators of Pythagorean approximations to 3. %C A195616 See A195500 for a discussion and references. %H A195616 Colin Barker, <a href="/A195616/b195616.txt">Table of n, a(n) for n = 1..633</a> %H A195616 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (37,37,-1). %F A195616 From _Colin Barker_, Jun 04 2015: (Start) %F A195616 a(n) = 37*a(n-1) + 37*a(n-2) - a(n-3). %F A195616 G.f.: 12*x / ((1+x)*(1-38*x+x^2)). (End) %F A195616 From _G. C. Greubel_, Feb 13 2023: (Start) %F A195616 a(n) = (3/10)*(A097314(n) + (-1)^n). %F A195616 a(n) = (1/20)*(A085447(2*n+1) - 6*(-1)^n). (End) %t A195616 r = 3; z = 20; %t A195616 p[{f_, n_}] := (#1[[2]]/#1[[ %t A195616 1]] &)[({2 #1[[1]] #1[[2]], #1[[1]]^2 - #1[[ %t A195616 2]]^2} &)[({Numerator[#1], Denominator[#1]} &)[ %t A195616 Array[FromContinuedFraction[ %t A195616 ContinuedFraction[(#1 + Sqrt[1 + #1^2] &)[f], #1]] &, {n}]]]]; %t A195616 {a, b} = ({Denominator[#1], Numerator[#1]} &)[ %t A195616 p[{r, z}]] (* A195616, A195617 *) %t A195616 Sqrt[a^2 + b^2] (* A097315 *) %t A195616 (* _Peter J. C. Moses_, Sep 02 2011 *) %t A195616 Table[(1/20)*(LucasL[2*n+1,6] -6*(-1)^n), {n,40}] (* _G. C. Greubel_, Feb 13 2023 *) %o A195616 (PARI) Vec(12*x/((1+x)*(1-38*x+x^2)) + O(x^20)) \\ _Colin Barker_, Jun 04 2015 %o A195616 (Magma) I:=[12, 444, 16872]; [n le 3 select I[n] else 37*Self(n-1) +37*Self(n-2) -Self(n-3): n in [1..40]]; // _G. C. Greubel_, Feb 13 2023 %o A195616 (SageMath) %o A195616 A085447=BinaryRecurrenceSequence(6,1,2,6) %o A195616 [(A085447(2*n+1) - 6*(-1)^n)/20 for n in range(1,41)] # _G. C. Greubel_, Feb 13 2023 %Y A195616 Cf. A085447, A097314, A097315, A195500, A195617. %K A195616 nonn,easy,frac %O A195616 1,1 %A A195616 _Clark Kimberling_, Sep 22 2011