cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195739 Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).

This page as a plain text file.
%I A195739 #43 Oct 31 2023 12:06:02
%S A195739 1,0,1,0,1,4,0,1,17,32,0,1,61,348,400,0,1,214,2836,8640,6912,0,1,758,
%T A195739 21225,129288,254800,153664,0,1,2723,154741,1688424,6160640,8749056,
%U A195739 4194304,0,1,9908,1123143,20762073,125055400,313921008,343901376,136048896
%N A195739 Triangle read by rows: DX(n,d) = number of properly d-dimensional polyominoes with n cells, modulo translations (n>=1, 0 <= d <= n-1).
%C A195739 According to Barequet-Barequet-Rote, p. 261, the value DX(7, 6) = 134209 given by W. F. Lunnon is incorrect; it should be 153664, see A127670. - _Alexander Knapp_, May 13 2013
%H A195739 Robert A. Russell, <a href="/A195739/b195739.txt">Table of n, a(n) for n = 1..60</a>
%H A195739 R. Barequet, G. Barequet, and G. Rote, <a href="http://page.mi.fu-berlin.de/rote/Papers/pdf/Formulae+and+growth+rates+of+high-dimensional+polycubes.pdf">Formulae and growth rates of high-dimensional polycubes</a>, Combinatorica 30 (2010), pp. 257-275.
%H A195739 W. F. Lunnon, <a href="http://dx.doi.org/10.1093/comjnl/18.4.366">Counting multidimensional polyominoes</a>, Computer Journal 18 (1975), no. 4, pp. 366-367.
%e A195739 Triangle begins with DX(1,0):
%e A195739 n\d 0  1   2     3      4      5      6
%e A195739 ---------------------------------------
%e A195739 1...1
%e A195739 2...0  1
%e A195739 3...0  1   4
%e A195739 4...0  1  17    32
%e A195739 5...0  1  61   348    400
%e A195739 6...0  1 214  2836   8640   6912
%e A195739 7...0  1 758 21225 129288 254800 153664
%e A195739 ...
%Y A195739 Columns give A006762, A006763, A006764. Cf. A195738, A049430.
%Y A195739 Diagonals (with formulas) are A127670, A171860, A191092, A259015, A290738.
%K A195739 nonn,tabl
%O A195739 1,6
%A A195739 _N. J. A. Sloane_, Sep 23 2011