This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195744 #69 Apr 02 2024 11:07:13 %S A195744 31,61,121,241,481,961,1921,3841,7681,15361,30721,61441,122881,245761, %T A195744 491521,983041,1966081,3932161,7864321,15728641,31457281,62914561, %U A195744 125829121,251658241,503316481,1006632961,2013265921,4026531841,8053063681,16106127361 %N A195744 a(n) = 15*2^(n+1) + 1. %C A195744 Binary numbers of form 1111(0^n)1 where n is the index and number of 0's. %C A195744 Base 10 numbers of this sequence always end in 1. %C A195744 An Engel expansion of 1/15 to the base 2 as defined in A181565, with the associated series expansion 1/15 = 2/31 + 2^2/(31*61) + 2^3/(31*61*121) + 2^4/(31*61*121*241) + ... . - _Peter Bala_, Oct 29 2013 %C A195744 The only squares in this sequence are 121 = 11^2 and 961 = 31^2. - _Antti Karttunen_, Sep 24 2023 %H A195744 Vincenzo Librandi, <a href="/A195744/b195744.txt">Table of n, a(n) for n = 0..1000</a> %H A195744 <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2). %F A195744 a(n) = A052996(n+3) + A164094(n+2). %F A195744 From _Bruno Berselli_, Sep 23 2011: (Start) %F A195744 G.f.: (31-32*x)/(1-3*x+2*x^2). %F A195744 a(n) = 2*a(n-1)-1. %F A195744 a(n) = A110286(n+1)+1 = A128470(2^n). (End) %F A195744 E.g.f.: exp(x)*(1 + 30*exp(x)). - _Stefano Spezia_, Oct 08 2022 %F A195744 For n >= 0, A005940(a(n)) = A030514(2+n). - _Antti Karttunen_, Sep 24 2023 %e A195744 First few terms in binary are 11111, 111101, 1111001, 11110001, 111100001. %t A195744 15*2^Range[50] + 1 (* _Paolo Xausa_, Apr 02 2024 *) %o A195744 (Magma) [15*2^(n+1) + 1: n in [0..30]]; // _Vincenzo Librandi_, Sep 24 2011 %o A195744 (PARI) a(n)=30*2^n+1 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A195744 Cf. A052996, A164094. %Y A195744 Cf. A020737, A083575, A083683, A083686, A083705, A168596, A181565. %Y A195744 Cf. A110286, A128470. %Y A195744 Cf. A005940, A030514. %K A195744 easy,nonn %O A195744 0,1 %A A195744 _Brad Clardy_, Sep 23 2011 %E A195744 Corrected by _Arkadiusz Wesolowski_, Sep 23 2011