This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195778 #6 Mar 30 2012 18:57:48 %S A195778 1,2,3,3,4,5,5,5,6,6,7,7,7,8,8,9,9,9,10,10,10,11,11,11,12,12,13,13,13, %T A195778 14,14,14,15,15,15,15,15,16,16,16,16,17,17,17,18,18,18,19,19,19,20,20, %U A195778 20,21,21,21,21,21,22,22,22,23,23,23,24,24,24,24,24,25,25,25 %N A195778 Positive integers a for which there is a (-1)-Pythagorean triple (a,b,c) satisfying a<=b. %C A195778 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. %e A195778 First five (-1)-Pythagorean triples (A195778): %e A195778 (1,1,1), (2,2,2), (3,3,3), (3,8,7), (4,4,4). %e A195778 First five primitive (-1)-Pythagorean triples (A195796): %e A195778 (1,1,1), (3,8,7), (5,8,7), (5,21,19), (7,15,13). %t A195778 z8 = 800; z9 = 400; z7 = 100; %t A195778 k = -1; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; %t A195778 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] %t A195778 t[a_] := Table[d[a, b], {b, a, z8}] %t A195778 u[n_] := Delete[t[n], Position[t[n], 0]] %t A195778 Table[u[n], {n, 1, 15}] %t A195778 t = Table[u[n], {n, 1, z8}]; %t A195778 Flatten[Position[t, {}]] %t A195778 u = Flatten[Delete[t, Position[t, {}]]]; %t A195778 x[n_] := u[[3 n - 2]]; %t A195778 Table[x[n], {n, 1, z7}] (* A195778 *) %t A195778 y[n_] := u[[3 n - 1]]; %t A195778 Table[y[n], {n, 1, z7}] (* A195794 *) %t A195778 z[n_] := u[[3 n]]; %t A195778 Table[z[n], {n, 1, z7}] (* A195795 *) %t A195778 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] %t A195778 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] %t A195778 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] %t A195778 f = Table[x1[n], {n, 1, z9}]; %t A195778 x2 = Delete[f, Position[f, 0]] (* A195796 *) %t A195778 g = Table[y1[n], {n, 1, z9}]; %t A195778 y2 = Delete[g, Position[g, 0]] (* A195862 *) %t A195778 h = Table[z1[n], {n, 1, z9}]; %t A195778 z2 = Delete[h, Position[h, 0]] (* A195863 *) %Y A195778 Cf. A195770, A009004, A195794, A195795, A195796, A195862, A195863. %K A195778 nonn %O A195778 1,2 %A A195778 _Clark Kimberling_, Sep 25 2011