cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195793 Decimal expansion of arctan(1000000).

Original entry on oeis.org

1, 5, 7, 0, 7, 9, 5, 3, 2, 6, 7, 9, 4, 8, 9, 6, 6, 1, 9, 5, 6, 4, 6, 5, 5, 0, 2, 4, 9, 7, 2, 8, 8, 4, 7, 7, 5, 4, 3, 1, 9, 1, 8, 1, 7, 5, 8, 7, 8, 0, 2, 9, 1, 0, 0, 8, 5, 2, 5, 5, 1, 6, 6, 1, 2, 3, 3, 3, 6, 4, 1, 9, 1, 5, 9, 9, 0, 9, 2, 8, 7, 8, 3, 7, 9, 3, 9, 6, 4, 7, 8, 1, 1, 6, 7, 9, 0, 5, 7, 9
Offset: 1

Views

Author

Clark Kimberling, Sep 24 2011

Keywords

Comments

pi/2-arctan(1000000)<1/1000000; the first nonzero digits of pi/2-arctan(1000000) are as follows:
999999999999666666666666866666666666. The twelve 6's before 8 correspond to the limit shown at the end of the Mathematica program. What about the next eleven 6's?

Examples

			Let x=pi/2 and y=arc(1000000); then
x=1.57079632679489661923132169163975144209858469968755291048...
y=1.57079532679489661956465502497288477543191817587802910085...
x-y=0.000000099999999999966666666666686666666666652380963492...
		

Crossrefs

For other approximations to Pi see A216542, A013706, A216543, A216544, A216545, A013705, A216546, A216547, A216548. - N. J. A. Sloane, Sep 08 2012

Programs

  • Mathematica
    N[Pi/2, 100]
    N[ArcTan[10^6], 100]
    RealDigits[%]  (* A195793 *)
    Limit[n^2 - (n^3) (Pi/2 - ArcTan[n]), n -> Infinity]
    (* Limit equals 1/3 *)
  • PARI
    atan(1e6) \\ Charles R Greathouse IV, Nov 20 2024