A195825 Square array T(n,k) read by antidiagonals, n>=0, k>=1, which arises from a generalization of Euler's Pentagonal Number Theorem.
1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 5, 2, 1, 1, 1, 7, 3, 1, 1, 1, 1, 11, 4, 2, 1, 1, 1, 1, 15, 5, 3, 1, 1, 1, 1, 1, 22, 7, 4, 2, 1, 1, 1, 1, 1, 30, 10, 4, 3, 1, 1, 1, 1, 1, 1, 42, 13, 5, 4, 2, 1, 1, 1, 1, 1, 1, 56, 16, 7, 4, 3, 1, 1, 1, 1, 1, 1, 1, 77, 21, 10, 4
Offset: 0
Examples
Array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, ... 5, 3, 2, 1, 1, 1, 1, 1, 1, 1, ... 7, 4, 3, 2, 1, 1, 1, 1, 1, 1, ... 11, 5, 4, 3, 2, 1, 1, 1, 1, 1, ... 15, 7, 4, 4, 3, 2, 1, 1, 1, 1, ... 22, 10, 5, 4, 4, 3, 2, 1, 1, 1, ... 30, 13, 7, 4, 4, 4, 3, 2, 1, 1, ... 42, 16, 10, 5, 4, 4, 4, 3, 2, 1, ... 56, 21, 12, 7, 4, 4, 4, 4, 3, 2, ... 77, 28, 14, 10, 5, 4, 4, 4, 4, 3, ... 101, 35, 16, 12, 7, 4, 4, 4, 4, 4, ... 135, 43, 21, 13, 10, 5, 4, 4, 4, 4, ... 176, 55, 27, 14, 12, 7, 4, 4, 4, 4, ... ... Column 1 is A000041 which starts: [1, 1], 2, 3, 5, 7, 11, ... The column contains only one plateau: [1, 1] which has level 1 and length 2. Column 3 is A036820 which starts: [1, 1, 1, 1], 2, 3, [4, 4], 5, 7, 10, ... The column contains two plateaus: [1, 1, 1, 1], [4, 4], which have levels 1, 4 and lengths 4, 2. Column 6 is A195850 which starts: [1, 1, 1, 1, 1, 1, 1], 2, 3, [4, 4, 4, 4, 4], 5, 7, 10, 12, [13, 13, 13], 14, 16, 21, ... The column contains three plateaus: [1, 1, 1, 1, 1, 1, 1], [4, 4, 4, 4, 4], [13, 13, 13], which have levels 1, 4, 13 and lengths 7, 5, 3.
Links
- Leonhard Euler, De mirabilibus proprietatibus numerorum pentagonalium
- Leonhard Euler, On the remarkable properties of the pentagonal numbers, arXiv:math/0505373 [math.HO], 2005.
- Eric Weisstein's World of Mathematics, Pentagonal Number Theorem
- Wikipedia, Pentagonal number theorem
Crossrefs
Formula
Column k is asymptotic to exp(Pi*sqrt(2*n/(k+2))) / (8*sin(Pi/(k+2))*n). - Vaclav Kotesovec, Aug 14 2017
Comments