This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195872 #8 Mar 30 2012 18:57:48 %S A195872 1,2,3,4,5,5,6,6,6,7,7,8,9,9,9,10,10,10,11,11,11,12,12,12,13,13,13,14, %T A195872 14,14,14,15,15,15,16,16,16,17,17,17,18,18,18,18,18,19,19,19,20,20,20, %U A195872 21,21,21,22,22,22,22,22,23,23,23,24,24,24,25,25,26,26,26,26 %N A195872 Positive integers a for which there is a (-1/2)-Pythagorean triple (a,b,c) satisfying a<=b. %C A195872 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. %e A195872 (-1/2)-Pythagorean triples: %e A195872 1,2,2 %e A195872 2,4,4 %e A195872 3,6,6 %e A195872 4,8,8 %e A195872 5,48,47 %e A195872 (For primitive triples, see A195875.) %t A195872 z8 = 800; z9 = 400; z7 = 100; %t A195872 k = -1/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; %t A195872 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] %t A195872 t[a_] := Table[d[a, b], {b, a, z8}] %t A195872 u[n_] := Delete[t[n], Position[t[n], 0]] %t A195872 Table[u[n], {n, 1, 15}] %t A195872 t = Table[u[n], {n, 1, z8}]; %t A195872 Flatten[Position[t, {}]] %t A195872 u = Flatten[Delete[t, Position[t, {}]]]; %t A195872 x[n_] := u[[3 n - 2]]; %t A195872 Table[x[n], {n, 1, z7}] (* A195872 *) %t A195872 y[n_] := u[[3 n - 1]]; %t A195872 Table[y[n], {n, 1, z7}] (* A195873 *) %t A195872 z[n_] := u[[3 n]]; %t A195872 Table[z[n], {n, 1, z7}] (* A195874 *) %t A195872 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] %t A195872 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] %t A195872 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] %t A195872 f = Table[x1[n], {n, 1, z9}]; %t A195872 x2 = Delete[f, Position[f, 0]] (* A195875 *) %t A195872 g = Table[y1[n], {n, 1, z9}]; %t A195872 y2 = Delete[g, Position[g, 0]] (* A195876 *) %t A195872 h = Table[z1[n], {n, 1, z9}]; %t A195872 z2 = Delete[h, Position[h, 0]] (* A195877 *) %Y A195872 Cf. A195770, A195875. %K A195872 nonn %O A195872 1,2 %A A195872 _Clark Kimberling_, Sep 25 2011