This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195907 #37 Feb 16 2025 08:33:15 %S A195907 1,7,7,2,6,3,7,2,0,4,8,2,6,6,5,2,1,5,3,0,3,1,2,5,0,5,5,1,1,5,7,8,5,8, %T A195907 4,8,1,3,4,3,3,8,6,0,4,5,3,7,2,2,4,6,0,5,3,8,3,1,5,9,0,5,1,0,8,7,9,9, %U A195907 6,8,6,8,0,8,3,9,6,3,4,0,1,2,5,4,0,3,3,8,7,1,7,4,2,4,9,6,0,0,2,9,6,4,0,5,1,9,0,7,1,3,4,7,3,5,1 %N A195907 Decimal expansion of Sum_{n = -oo..oo} exp(-n^2). %C A195907 A Riemann sum approximation to Integral_{-oo..oo} exp(-x^2) dx = sqrt(Pi). %D A195907 Mentioned by N. D. Elkies in a lecture on the Poisson summation formula in Nashville TN in May 2010. %H A195907 G. C. Greubel, <a href="/A195907/b195907.txt">Table of n, a(n) for n = 1..5000</a> %H A195907 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/DedekindEtaFunction.html">Dedekind Eta Function</a> %H A195907 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/JacobiThetaFunctions.html">Jacobi Theta Functions</a> %F A195907 Equals Jacobi theta_{3}(0,exp(-1)). - _Jianing Song_, Oct 13 2021 %F A195907 Equals eta(i/Pi)^5 / (eta(i/(2*Pi))*eta(2*i/Pi))^2, where eta(t) = 1 - q - q^2 + q^5 + q^7 - q^12 - q^15 + ... is the Dedekind eta function without the q^(1/24) factor in powers of q = exp(2*Pi*i*t) (Cf. A000122). - _Jianing Song_, Oct 14 2021 %F A195907 Equals Product_{k>=1} tanh((k*(1 + i*Pi))/2), i=sqrt(-1). - _Antonio Graciá Llorente_, May 13 2024 %e A195907 1.77263720482665215303125055115785848134338604537224605383159051... %e A195907 For comparison, sqrt(Pi) = 1.7724538509055160272981674833411451827975494561223871282138... (A002161). %t A195907 N[Sum[Exp[-n^2], {n, -Infinity, Infinity}], 200] %t A195907 RealDigits[ N[ EllipticTheta[3, 0, 1/E], 115]][[1]] (* _Jean-François Alcover_, Nov 08 2012 *) %o A195907 (PARI) 1 + 2*suminf(n=1,exp(-n^2)) \\ _Charles R Greathouse IV_, Jun 06 2016 %o A195907 (PARI) (eta(I/Pi))^5 / (eta(I/(2*Pi))^2 * eta(2*I/Pi)^2) \\ _Jianing Song_, Oct 13 2021 %Y A195907 Cf. A002161, A218792. %K A195907 nonn,cons %O A195907 1,2 %A A195907 _N. J. A. Sloane_, Sep 25 2011