cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195909 First numerator and then denominator in a fraction expansion of log(2) - Pi/8.

This page as a plain text file.
%I A195909 #28 Dec 17 2015 09:43:31
%S A195909 1,2,-1,3,1,12,1,30,-1,35,1,56,1,90,-1,99,1,132,1,182,-1,195,1,240,1,
%T A195909 306,-1,323,1,380,1,462,-1,483,1,552,1,650,-1,675,1,756,1,870,-1,899,
%U A195909 1,992,1,1122,-1,1155,1
%N A195909 First numerator and then denominator in a fraction expansion of log(2) - Pi/8.
%D A195909 Mohammad K. Azarian, Problem 1218, Pi Mu Epsilon Journal, Vol. 13, No. 2, Spring 2010, p. 116.  Solution published in Vol. 13, No. 3, Fall 2010, pp. 183-185.
%D A195909 Granino A. Korn and Theresa M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill Book Company, New York (1968).
%F A195909 log(2) - Pi/8 = Sum_{n>=1} (-1)^(n+1)*(1/n) + (-1/2)*Sum_{n>=0} (-1)^n*(1/(2*n+1)).
%F A195909 Empirical g.f.: x*(1+2*x-2*x^2+x^3+2*x^4+9*x^5-2*x^6+14*x^7+2*x^8+3*x^9-2*x^10+3*x^11+x^12) / ((1-x)^3*(1+x)^3*(1-x+x^2)^2*(1+x+x^2)^2). - _Colin Barker_, Dec 17 2015
%e A195909 1/2 - 1/3 + 1/12 + 1/30 - 1/35 + 1/56 + 1/90 - 1/99 + 1/132 + 1/182 - 1/195 + 1/240 + ... = [(1 - 1/2) + (1/3 - 1/4) + (1/5 - 1/6) + (1/7 - 1/8) + (1/9 - 1/10) + (1/11 - 1/12) + ... ] - (1/2)*[(1 - 1/3) + (1/5 - 1/7) + (1/9 - 1/11) + (1/13 - 1/15) + ... ] = log(2) - Pi/8.
%Y A195909 Cf. A195913, A195697, A195947, A164833, A118324, A098289, A075549, A016655, A019675, A161685, A144981, A168056, A004772.
%K A195909 frac,sign
%O A195909 1,2
%A A195909 _Mohammad K. Azarian_, Sep 26 2011