cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195925 Positive integers a for which there is a (3/2)-Pythagorean triple (a,b,c) satisfying a<=b.

This page as a plain text file.
%I A195925 #8 Mar 30 2012 18:57:48
%S A195925 5,6,9,10,12,13,14,15,15,17,18,18,19,20,21,21,22,23,24,25,25,26,27,27,
%T A195925 28,29,30,30,30,30,31,32,33,34,34,35,36,36,38,38,39,39,40,42,42,42,42,
%U A195925 43,44,45,45,45,46,47,48,48,50,50,51,51,52,54,54,54,55,55,56
%N A195925 Positive integers a for which there is a (3/2)-Pythagorean triple (a,b,c) satisfying a<=b.
%C A195925 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
%t A195925 z8 = 800; z9 = 400; z7 = 100;
%t A195925 k = 3/2; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
%t A195925 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
%t A195925 t[a_] := Table[d[a, b], {b, a, z8}]
%t A195925 u[n_] := Delete[t[n], Position[t[n], 0]]
%t A195925 Table[u[n], {n, 1, 15}]
%t A195925 t = Table[u[n], {n, 1, z8}];
%t A195925 Flatten[Position[t, {}]]
%t A195925 u = Flatten[Delete[t, Position[t, {}]]];
%t A195925 x[n_] := u[[3 n - 2]];
%t A195925 Table[x[n], {n, 1, z7}]  (* A195925 *)
%t A195925 y[n_] := u[[3 n - 1]];
%t A195925 Table[y[n], {n, 1, z7}]  (* A195926 *)
%t A195925 z[n_] := u[[3 n]];
%t A195925 Table[z[n], {n, 1, z7}]  (* A195927 *)
%t A195925 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
%t A195925 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
%t A195925 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
%t A195925 f = Table[x1[n], {n, 1, z9}];
%t A195925 x2 = Delete[f, Position[f, 0]]  (* A195928 *)
%t A195925 g = Table[y1[n], {n, 1, z9}];
%t A195925 y2 = Delete[g, Position[g, 0]]  (* A195929 *)
%t A195925 h = Table[z1[n], {n, 1, z9}];
%t A195925 z2 = Delete[h, Position[h, 0]]  (* A195930 *)
%Y A195925 (See A195925.)
%K A195925 nonn
%O A195925 1,1
%A A195925 _Clark Kimberling_, Sep 26 2011