This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A195932 #8 Mar 30 2012 18:57:48 %S A195932 1,2,3,4,5,6,7,7,8,8,9,9,9,9,10,11,11,12,13,13,13,14,14,15,15,15,16, %T A195932 16,16,16,17,17,17,18,18,18,18,19,19,20,21,21,21,22,22,23,23,23,24,24, %U A195932 24,24,25,25,26,26,27,27,27,27,27,27,27,28,28,29,29,29,30,30,30 %N A195932 Positive integers a for which there is a (-1/3)-Pythagorean triple (a,b,c) satisfying a<=b. %C A195932 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. %t A195932 z8 = 800; z9 = 400; z7 = 100; %t A195932 k = -1/3; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; %t A195932 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] %t A195932 t[a_] := Table[d[a, b], {b, a, z8}] %t A195932 u[n_] := Delete[t[n], Position[t[n], 0]] %t A195932 Table[u[n], {n, 1, 15}] %t A195932 t = Table[u[n], {n, 1, z8}]; %t A195932 Flatten[Position[t, {}]] %t A195932 u = Flatten[Delete[t, Position[t, {}]]]; %t A195932 x[n_] := u[[3 n - 2]]; %t A195932 Table[x[n], {n, 1, z7}] (* A195932 *) %t A195932 y[n_] := u[[3 n - 1]]; %t A195932 Table[y[n], {n, 1, z7}] (* A195933 *) %t A195932 z[n_] := u[[3 n]]; %t A195932 Table[z[n], {n, 1, z7}] (* A195934 *) %t A195932 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] %t A195932 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] %t A195932 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] %t A195932 f = Table[x1[n], {n, 1, z9}]; %t A195932 x2 = Delete[f, Position[f, 0]] (* A195935 *) %t A195932 g = Table[y1[n], {n, 1, z9}]; %t A195932 y2 = Delete[g, Position[g, 0]] (* A195936 *) %t A195932 h = Table[z1[n], {n, 1, z9}]; %t A195932 z2 = Delete[h, Position[h, 0]] (* A195937 *) %Y A195932 Cf. A195770, A195933, A195934, A195935. %K A195932 nonn %O A195932 1,2 %A A195932 _Clark Kimberling_, Sep 26 2011