cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195945 Powers of 13 which have no zero in their decimal expansion.

This page as a plain text file.
%I A195945 #32 Sep 08 2022 08:45:59
%S A195945 1,13,169,2197,28561,371293,62748517,137858491849,3937376385699289
%N A195945 Powers of 13 which have no zero in their decimal expansion.
%C A195945 Probably finite. Is 3937376385699289 the largest term?
%C A195945 No further terms up to 13^25000. - _Harvey P. Dale_, Oct 01 2011
%C A195945 No further terms up to 13^45000. - _Vincenzo Librandi_, Jul 31 2013
%C A195945 No further terms up to 13^(10^9). - _Daniel Starodubtsev_, Mar 22 2020
%H A195945 M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014
%H A195945 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_607.htm">Puzzle 607. A zeroless Prime power</a>, on primepuzzles.net, Sept. 24, 2011.
%H A195945 W. Schneider, <a href="http://oeis.org/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> (local copy of www.wschnei.de/digit-related-numbers/nozeros.html), as of Jan 30 2003.
%F A195945 Equals A001022 intersect A052382 (as a set).
%F A195945 Equals A001022 o A195944 (as a function).
%t A195945 Select[13^Range[0,250],DigitCount[#,10,0]==0&] (* _Harvey P. Dale_, Oct 01 2011 *)
%o A195945 (PARI) for(n=0,9999, is_A052382(13^n) && print1(13^n,","))
%o A195945 (Magma) [13^n: n in [0..2*10^4] | not 0 in Intseq(13^n)]; // _Bruno Berselli_, Sep 26 2011
%Y A195945 For other zeroless powers x^n, see A238938 (x=2), A238939, A238940, A195948, A238936, A195908, A195946 (x=11), A195945, A195942, A195943, A103662.
%Y A195945 For the corresponding exponents, see A007377, A008839, A030700, A030701, A008839, A030702, A030703, A030704, A030705, A030706, A195944 and also A020665.
%Y A195945 For other related sequences, see A052382, A027870, A102483, A103663.
%K A195945 nonn,base
%O A195945 1,2
%A A195945 _M. F. Hasler_, Sep 25 2011