cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195946 Powers of 11 which have no zero in their decimal expansion.

This page as a plain text file.
%I A195946 #23 Jan 28 2023 14:01:08
%S A195946 1,11,121,1331,14641,1771561,19487171,214358881,2357947691,
%T A195946 3138428376721,34522712143931,379749833583241,4177248169415651,
%U A195946 45949729863572161,5559917313492231481,4978518112499354698647829163838661251242411
%N A195946 Powers of 11 which have no zero in their decimal expansion.
%C A195946 Probably finite. Is 4978518112499354698647829163838661251242411 the largest term?
%H A195946 M. F. Hasler, <a href="https://oeis.org/wiki/Zeroless_powers">Zeroless powers</a>, OEIS Wiki, Mar 07 2014
%H A195946 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_607.htm">Puzzle 607. A zeroless Prime power</a>, on primepuzzles.net, Sept. 24, 2011.
%H A195946 W. Schneider, <a href="http://oeis.org/A007496/a007496.html">NoZeros: Powers n^k without Digit Zero</a> (local copy of www.wschnei.de/digit-related-numbers/nozeros.html), as of Jan 30 2003.
%F A195946 a(n) = 11^A030706(n).
%F A195946 A195946 = A001020 intersect A052382.
%t A195946 Select[11^Range[0,50],DigitCount[#,10,0]==0&] (* _Harvey P. Dale_, Jan 27 2014 *)
%o A195946 (PARI) for( n=0,9999, is_A052382(11^n) && print1(11^n,","))
%o A195946 (Magma) [11^n: n in [0..3*10^4] | not 0 in Intseq(11^n)]; // _Bruno Berselli_, Sep 26 2011
%Y A195946 For the zeroless numbers (powers x^n), see A195942, A195943, A238938, A238939, A238940, A195948, A238936, A195908, A195945.
%Y A195946 For the corresponding exponents, see A007377, A008839, A030700, A030701, A030702, A030703, A030704, A030705, A030706, A195944.
%K A195946 nonn,base
%O A195946 1,2
%A A195946 _M. F. Hasler_, Sep 25 2011
%E A195946 Keyword:fini removed by _Jianing Song_, Jan 28 2023 as finiteness is only conjectured.