cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A195975 Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.

This page as a plain text file.
%I A195975 #7 Jun 02 2025 04:16:36
%S A195975 9,43,67,133,244,519,1072,2225,4456,9098,19066,39689,82372,171498,
%T A195975 358146,748911,1567225,3279792,6866722,14390098,30170057,63261378,
%U A195975 132676528,278340227,584041659,1225661652,2572438981,5399619168,11334969352
%N A195975 Number of nX5 0..4 arrays with each element x equal to the number its horizontal and vertical neighbors equal to 2,0,1,3,4 for x=0,1,2,3,4.
%C A195975 Every 0 is next to 0 2's, every 1 is next to 1 0's, every 2 is next to 2 1's, every 3 is next to 3 3's, every 4 is next to 4 4's
%C A195975 Column 5 of A195978
%H A195975 R. H. Hardin, <a href="/A195975/b195975.txt">Table of n, a(n) for n = 1..200</a>
%F A195975 Empirical: a(n) = 5*a(n-1) -9*a(n-2) +11*a(n-3) -6*a(n-4) -36*a(n-5) +90*a(n-6) -142*a(n-7) +197*a(n-8) -46*a(n-9) -183*a(n-10) +478*a(n-11) -942*a(n-12) +792*a(n-13) -498*a(n-14) -210*a(n-15) +1415*a(n-16) -1639*a(n-17) +1834*a(n-18) -709*a(n-19) -862*a(n-20) +1990*a(n-21) -3015*a(n-22) +1957*a(n-23) -374*a(n-24) -1742*a(n-25) +3816*a(n-26) -3839*a(n-27) +2182*a(n-28) -480*a(n-29) -3921*a(n-30) +3721*a(n-31) -4788*a(n-32) +2840*a(n-33) +2416*a(n-34) -577*a(n-35) +7322*a(n-36) -1770*a(n-37) +1322*a(n-38) -1236*a(n-39) -6838*a(n-40) -789*a(n-41) -4538*a(n-42) -89*a(n-43) +3459*a(n-44) +1446*a(n-45) +4611*a(n-46) +1551*a(n-47) -859*a(n-48) -465*a(n-49) -2777*a(n-50) -1070*a(n-51) +363*a(n-52) -79*a(n-53) +1222*a(n-54) -43*a(n-55) -809*a(n-56) -357*a(n-57) -616*a(n-58) +368*a(n-59) +965*a(n-60) +619*a(n-61) +408*a(n-62) -203*a(n-63) -570*a(n-64) -385*a(n-65) -205*a(n-66) +35*a(n-67) +181*a(n-68) +122*a(n-69) +57*a(n-70) +5*a(n-71) -33*a(n-72) -26*a(n-73) -14*a(n-74) -8*a(n-75) -2*a(n-76)
%e A195975 Some solutions for n=4
%e A195975 ..1..2..2..1..2....0..0..1..1..0....0..1..1..1..2....1..1..1..0..0
%e A195975 ..0..1..1..0..1....0..0..1..1..0....1..1..0..0..1....0..0..1..1..1
%e A195975 ..1..1..1..0..1....1..1..1..1..0....1..1..1..1..1....1..1..1..1..1
%e A195975 ..1..0..1..1..2....2..1..0..1..1....0..0..1..1..0....2..1..0..0..0
%K A195975 nonn
%O A195975 1,1
%A A195975 _R. H. Hardin_ Sep 25 2011