cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196008 Positive integers a for which there is a (-5/3)-Pythagorean triple (a,b,c) satisfying a<=b.

This page as a plain text file.
%I A196008 #8 Mar 30 2012 18:57:49
%S A196008 3,5,6,7,8,8,9,9,10,11,12,13,14,15,15,15,16,16,17,18,18,19,20,21,21,
%T A196008 21,22,24,24,24,25,25,26,27,27,27,27,28,30,30,30,31,32,32,32,33,33,35,
%U A196008 35,35,35,36,36,37,38,39,39,40,40,40,40,42,42,42,43,45,45,45,45
%N A196008 Positive integers a for which there is a (-5/3)-Pythagorean triple (a,b,c) satisfying a<=b.
%C A196008 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences.
%t A196008 z8 = 400; z9 = 150; z7 = 100;
%t A196008 k = -5/3; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b];
%t A196008 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0]
%t A196008 t[a_] := Table[d[a, b], {b, a, z8}]
%t A196008 u[n_] := Delete[t[n], Position[t[n], 0]]
%t A196008 Table[u[n], {n, 1, 15}]
%t A196008 t = Table[u[n], {n, 1, z8}];
%t A196008 Flatten[Position[t, {}]]
%t A196008 u = Flatten[Delete[t, Position[t, {}]]];
%t A196008 x[n_] := u[[3 n - 2]];
%t A196008 Table[x[n], {n, 1, z7}]   (* A196008 *)
%t A196008 y[n_] := u[[3 n - 1]];
%t A196008 Table[y[n], {n, 1, z7}]   (* A196009 *)
%t A196008 z[n_] := u[[3 n]];
%t A196008 Table[z[n], {n, 1, z7}]   (* A196083 *)
%t A196008 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0]
%t A196008 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0]
%t A196008 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0]
%t A196008 f = Table[x1[n], {n, 1, z9}];   (* A196084 *)
%t A196008 x2 = Delete[f, Position[f, 0]]
%t A196008 g = Table[y1[n], {n, 1, z9}];   (* A196085 *)
%t A196008 y2 = Delete[g, Position[g, 0]]
%t A196008 h = Table[z1[n], {n, 1, z9}];   (* A196086 *)
%t A196008 z2 = Delete[h, Position[h, 0]]
%Y A196008 Cf. A195770, A196009, A196083, A186084.
%K A196008 nonn
%O A196008 1,1
%A A196008 _Clark Kimberling_, Sep 27 2011