cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A197019 Decimal expansion of the radius of the circle tangent to the curve y=cos(4x) and to the positive x and y axes.

Original entry on oeis.org

1, 7, 1, 9, 9, 4, 5, 1, 7, 3, 4, 8, 1, 0, 1, 6, 9, 0, 7, 3, 9, 0, 2, 4, 8, 6, 5, 4, 4, 8, 7, 1, 4, 9, 5, 4, 3, 9, 4, 8, 8, 2, 2, 2, 6, 6, 4, 9, 3, 9, 8, 1, 5, 8, 8, 7, 3, 3, 3, 6, 3, 7, 9, 7, 1, 0, 0, 0, 0, 9, 9, 8, 4, 8, 7, 9, 6, 2, 8, 7, 0, 9, 0, 3, 8, 6, 7, 0, 8, 8, 4, 8, 6, 8, 9, 7, 3, 6, 6
Offset: 0

Views

Author

Clark Kimberling, Oct 08 2011

Keywords

Comments

Let (x,y) denote the point of tangency. Then
x=0.33861718723736417045737960551501765846156681578...
y=0.21464425212782002883052365316387247038020190838...
slope=-0.332183120530610097233795968342303024088179...
(The Mathematica program includes a graph.)

Examples

			radius=0.171994517348101690739024865448714954394...
		

Crossrefs

Programs

  • Mathematica
    r = .172; c = 4;
    Show[Plot[Cos[c*x], {x, 0, Pi}],
     ContourPlot[(x - r)^2 + (y - r)^2 == r^2, {x, -1, 1}, {y, -1, 1}], PlotRange -> All, AspectRatio -> Automatic]
    f[x_] := (x - c*Sin[c*x] Cos[c*x])/(1 - c*Sin[c*x]);
    t = x /. FindRoot[Cos[c*x] == f[x] + Sqrt[2*f[x]*x - x^2], {x, .5, 1}, WorkingPrecision -> 100]
    x1 = Re[t]    (* x coordinate of tangency point *)
    y = Cos[c*x1] (* y coordinate of tangency point *)
    radius = f[x1]
    RealDigits[radius] (* A197019 *)
    slope = -Sin[x1]   (* slope at tangency point *)

A196012 Number of n X 3 0..4 arrays with each element equal to the number its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 1, 2, 7, 13, 16, 32, 65, 125, 211, 390, 732, 1368, 2478, 4555, 8417, 15564, 28583, 52598, 96921, 178684, 328956, 605723, 1115678, 2055336, 3785356, 6971537, 12840292, 23650713, 43560381, 80229677, 147768685, 272167135, 501285666
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2011

Keywords

Comments

Column 3 of A196017.

Examples

			All solutions for n=4:
..2..2..0....2..2..2....0..2..2....2..3..2....2..2..2....2..3..2....2..2..2
..3..3..2....2..0..2....2..3..3....3..4..3....2..0..2....3..3..3....2..0..2
..2..0..2....3..3..3....2..0..2....3..4..3....2..3..3....2..0..2....3..3..2
..2..2..2....2..3..2....2..2..2....2..3..2....0..2..2....2..2..2....2..2..0
		

Crossrefs

Cf. A196017.

Formula

Empirical: a(n) = a(n-1) +a(n-2) +3*a(n-4) -a(n-5) -2*a(n-6).
Empirical g.f.: x*(1 - x)*(1 + x + x^2 + 5*x^3 + 6*x^4) / (1 - x - x^2 - 3*x^4 + x^5 + 2*x^6). - Colin Barker, May 08 2018

A196013 Number of n X 4 0..4 arrays with each element equal to the number its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 1, 7, 25, 27, 91, 231, 455, 1135, 2693, 6041, 14257, 33349, 76941, 179553, 418345, 971503, 2261807, 5264419, 12243481, 28490729, 66295633, 154236017, 358872825, 835013523, 1942797397, 4520363539, 10517663443, 24471508585, 56938341019
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2011

Keywords

Comments

Column 4 of A196017.

Examples

			Some solutions for n=5:
..2..3..3..2....2..2..3..2....2..3..2..2....2..2..2..0....2..2..3..2
..3..4..4..3....2..0..3..3....2..3..0..2....2..0..3..2....2..0..3..3
..3..4..3..3....3..3..3..3....0..3..2..3....3..3..4..3....3..3..3..3
..3..3..0..2....2..3..0..2....2..3..0..2....3..4..4..3....3..3..0..2
..2..3..2..2....0..2..2..2....2..3..2..2....2..3..3..2....2..3..2..2
		

Crossrefs

Cf. A196017.

Formula

Empirical: a(n) = a(n-1) +2*a(n-2) +4*a(n-3) -a(n-4) -4*a(n-5) -2*a(n-6) -3*a(n-7) -3*a(n-8) +a(n-10) for n>14.
Empirical g.f.: x*(1 + 4*x^2 + 12*x^3 - 15*x^4 - 9*x^5 - x^6 - 8*x^7 + x^8 - 3*x^9 + 2*x^10+ 6*x^11 + 2*x^12 - 2*x^13) / (1 - x - 2*x^2 - 4*x^3 + x^4 + 4*x^5 + 2*x^6 + 3*x^7 + 3*x^8 - x^10). - Colin Barker, May 08 2018

A196014 Number of nX5 0..4 arrays with each element equal to the number its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 3, 13, 27, 106, 316, 835, 2350, 7232, 21846, 63985, 186029, 548387, 1625398, 4800819, 14129048, 41608725, 122724222, 362055916, 1067475979, 3146535362, 9276448225, 27352573231, 80649512515, 237779505381, 701041117758
Offset: 1

Views

Author

R. H. Hardin Sep 26 2011

Keywords

Comments

Column 5 of A196017

Examples

			Some solutions for n=4
..2..3..3..3..2....2..3..3..2..2....2..2..3..2..0....0..2..3..3..2
..3..4..3..4..3....3..4..3..0..2....2..0..3..3..2....2..3..4..4..3
..3..3..0..3..3....3..4..4..3..2....2..3..3..0..2....2..0..3..4..3
..2..3..2..3..2....2..3..3..2..0....0..2..3..2..2....2..2..3..3..2
		

Formula

Empirical: a(n) = 2*a(n-1) +a(n-2) +a(n-3) +19*a(n-4) -7*a(n-5) -16*a(n-6) -26*a(n-7) -90*a(n-8) +26*a(n-10) +41*a(n-11) +143*a(n-12) +3*a(n-13) -26*a(n-14) -17*a(n-15) -40*a(n-16) -4*a(n-17) +36*a(n-18) -18*a(n-19) -24*a(n-20) +11*a(n-21) +8*a(n-22) -4*a(n-23) for n>26

A196015 Number of n X 6 0..4 arrays with each element equal to the number its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 5, 16, 91, 316, 708, 3572, 14607, 54710, 196832, 782926, 3062632, 11714725, 44732791, 173085686, 668753382, 2573295221, 9902406595, 38178807169, 147173375542, 566944981911, 2184078533126, 8416292695545, 32431165832934
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2011

Keywords

Examples

			Some solutions for n=4:
..2..2..3..3..2..2....2..2..3..2..2..0....2..3..2..3..2..2....0..2..3..2..3..2
..2..0..3..2..0..2....2..0..2..0..2..2....3..2..0..2..0..2....2..3..3..0..2..3
..3..3..3..0..2..3....3..3..3..2..0..2....2..0..2..3..3..3....2..0..3..2..0..2
..2..3..3..2..3..2....2..2..0..2..2..2....2..2..2..0..2..2....2..2..3..3..2..2
		

Crossrefs

Column 6 of A196017.

Formula

Empirical: a(n) = a(n-1) +7*a(n-2) +11*a(n-3) +44*a(n-4) -24*a(n-5) -237*a(n-6) -250*a(n-7) -219*a(n-8) +211*a(n-9) +584*a(n-10) -127*a(n-11) +1087*a(n-12) +2905*a(n-13) +2083*a(n-14) +1536*a(n-15) +22*a(n-16) -2414*a(n-17) -3256*a(n-18) -2665*a(n-19) -3346*a(n-20) +8268*a(n-21) +11410*a(n-22) -14170*a(n-23) +13403*a(n-24) -38028*a(n-25) -27873*a(n-26) +9341*a(n-27) -22367*a(n-28) +21475*a(n-29) -13978*a(n-30) -7695*a(n-31) +48470*a(n-32) -3495*a(n-33) -2854*a(n-34) +6746*a(n-35) -24008*a(n-36) -2108*a(n-37) -6882*a(n-38) -5945*a(n-39) +15575*a(n-40) +8171*a(n-41) +80*a(n-42) +1201*a(n-43) -813*a(n-44) -403*a(n-45) -488*a(n-46) -598*a(n-47) +10*a(n-48) -143*a(n-49) -14*a(n-50) +3*a(n-51) -4*a(n-52) +6*a(n-53) +a(n-54) for n>59.

A196016 Number of n X 7 0..4 arrays with each element equal to the number its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 9, 32, 231, 835, 3572, 22711, 100094, 517009, 2740712, 14291156, 72486659, 375604408, 1948549100, 10070403094, 52010772351, 269069912146, 1391421035119, 7193724490586, 37198028475134, 192356730926735, 994618459574872, 5142944193784753, 26593708572196934
Offset: 1

Views

Author

R. H. Hardin, Sep 26 2011

Keywords

Examples

			Some solutions for n=4:
..2..3..3..3..3..2..2....2..2..3..3..2..3..2....2..3..3..3..3..3..2
..3..3..4..4..3..0..2....2..0..2..3..0..2..3....3..3..4..4..4..3..3
..2..0..3..4..4..3..3....3..2..0..3..2..0..2....2..0..3..3..3..0..2
..2..2..3..3..3..3..2....2..3..2..3..3..2..2....2..2..2..0..2..2..2
		

Crossrefs

Column 7 of A196017.

A196011 Number of n X n 0..4 arrays with each element equal to the number of its horizontal and vertical neighbors within one of itself.

Original entry on oeis.org

1, 1, 2, 25, 106, 708, 22711, 670449, 44864449, 5122273171, 1106078073333, 426788297174150
Offset: 1

Views

Author

R. H. Hardin Sep 26 2011

Keywords

Comments

Diagonal of A196017

Examples

			Some solutions for n=4
..2..3..2..2....2..3..2..0....0..2..3..2....0..2..2..2....2..2..3..2
..3..3..0..2....3..4..3..2....2..3..4..3....2..3..0..2....2..0..3..3
..3..4..3..2....2..3..0..2....2..0..3..2....3..4..3..2....2..3..4..3
..2..3..2..0....0..2..2..2....2..2..2..0....2..3..2..0....0..2..3..2
		
Showing 1-7 of 7 results.