cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196039 Total sum of the smallest part of every partition of every shell of n.

This page as a plain text file.
%I A196039 #38 Jul 06 2019 06:40:00
%S A196039 0,1,4,9,18,30,50,75,113,162,231,318,441,593,798,1058,1399,1824,2379,
%T A196039 3066,3948,5042,6422,8124,10264,12884,16138,20120,25027,30994,38312,
%U A196039 47168,57955,70974,86733,105676,128516,155850,188644,227783,274541
%N A196039 Total sum of the smallest part of every partition of every shell of n.
%C A196039 Partial sums of A046746.
%C A196039 Total sum of parts of all regions of n that contain 1 as a part. - _Omar E. Pol_, Mar 11 2012
%H A196039 Vaclav Kotesovec, <a href="/A196039/b196039.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%H A196039 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a>
%F A196039 a(n) = A066186(n) - A196025(n).
%F A196039 a(n) ~ exp(Pi*sqrt(2*n/3)) / (2*Pi*sqrt(2*n)). - _Vaclav Kotesovec_, Jul 06 2019
%e A196039 For n = 5 the seven partitions of 5 are:
%e A196039 5
%e A196039 3         + 2
%e A196039 4             + 1
%e A196039 2     + 2     + 1
%e A196039 3         + 1 + 1
%e A196039 2     + 1 + 1 + 1
%e A196039 1 + 1 + 1 + 1 + 1
%e A196039 .
%e A196039 The five shells of 5 (see A135010 and also A138121), written as a triangle, are:
%e A196039 1
%e A196039 2, 1
%e A196039 3, 1, 1
%e A196039 4, (2, 2), 1, 1, 1
%e A196039 5, (3, 2), 1, 1, 1, 1, 1
%e A196039 .
%e A196039 The first "2" of row 4 does not count, also the "3" of row 5 does not count, so we have:
%e A196039 1
%e A196039 2, 1
%e A196039 3, 1, 1
%e A196039 4, 2, 1, 1, 1
%e A196039 5, 2, 1, 1, 1, 1, 1
%e A196039 .
%e A196039 thus a(5) = 1+2+1+3+1+1+4+2+1+1+1+5+2+1+1+1+1+1 = 30.
%p A196039 b:= proc(n, i) option remember;
%p A196039      `if`(n=i, n, 0) +`if`(i<1, 0, b(n, i-1) +`if`(n<i, 0, b(n-i, i)))
%p A196039     end:
%p A196039 a:= proc(n) option remember;
%p A196039       b(n, n) +`if`(n=0, 0, a(n-1))
%p A196039     end:
%p A196039 seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 03 2012
%t A196039 b[n_, i_] := b[n, i] = If[n == i, n, 0] + If[i < 1, 0, b[n, i-1] + If[n < i, 0, b[n-i, i]]]; Accumulate[Table[b[n, n], {n, 0, 50}]] (* _Jean-François Alcover_, Feb 05 2017, after _Alois P. Heinz_ *)
%Y A196039 Cf. A026905, A046746, A066186, A135010, A138121, A182699, A182707, A182709, A183152, A193827, A196025, A196930, A196931, A198381, A206437.
%K A196039 nonn
%O A196039 0,3
%A A196039 _Omar E. Pol_, Oct 27 2011