This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A196040 #8 Mar 30 2012 18:57:49 %S A196040 7,8,9,11,13,14,15,16,17,18,19,20,20,21,22,23,24,26,27,27,28,28,29,30, %T A196040 32,33,33,34,35,36,36,39,39,40,40,40,41,42,44,44,45,45,46,47,48,48,49, %U A196040 51,52,54,54,55,56,56,56,57,58,60,60,63,63,63,63,64,64,66,68 %N A196040 Positive integers a for which there is a (4/3)-Pythagorean triple (a,b,c) satisfying a<=b. %C A196040 See A195770 for definitions of k-Pythagorean triple, primitive k-Pythagorean triple, and lists of related sequences. %t A196040 z8 = 800; z9 = 200; z7 = 200; %t A196040 k = -4/3; c[a_, b_] := Sqrt[a^2 + b^2 + k*a*b]; %t A196040 d[a_, b_] := If[IntegerQ[c[a, b]], {a, b, c[a, b]}, 0] %t A196040 t[a_] := Table[d[a, b], {b, a, z8}] %t A196040 u[n_] := Delete[t[n], Position[t[n], 0]] %t A196040 Table[u[n], {n, 1, 15}] %t A196040 t = Table[u[n], {n, 1, z8}]; %t A196040 Flatten[Position[t, {}]] %t A196040 u = Flatten[Delete[t, Position[t, {}]]]; %t A196040 x[n_] := u[[3 n - 2]]; %t A196040 Table[x[n], {n, 1, z7}] (* A196033 *) %t A196040 y[n_] := u[[3 n - 1]]; %t A196040 Table[y[n], {n, 1, z7}] (* A196034 *) %t A196040 z[n_] := u[[3 n]]; %t A196040 Table[z[n], {n, 1, z7}] (* A196035 *) %t A196040 x1[n_] := If[GCD[x[n], y[n], z[n]] == 1, x[n], 0] %t A196040 y1[n_] := If[GCD[x[n], y[n], z[n]] == 1, y[n], 0] %t A196040 z1[n_] := If[GCD[x[n], y[n], z[n]] == 1, z[n], 0] %t A196040 f = Table[x1[n], {n, 1, z9}]; %t A196040 x2 = Delete[f, Position[f, 0]] (* A196036 *) %t A196040 g = Table[y1[n], {n, 1, z9}]; %t A196040 y2 = Delete[g, Position[g, 0]] (* A196037 *) %t A196040 h = Table[z1[n], {n, 1, z9}]; %t A196040 z2 = Delete[h, Position[h, 0]] (* A196038 *) %Y A196040 Cf. A195770, A196041, A196042, A196043. %K A196040 nonn %O A196040 1,1 %A A196040 _Clark Kimberling_, Sep 27 2011