cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A196058 Diameter (i.e., largest distance between two vertices) of the rooted tree with Matula-Goebel number n.

This page as a plain text file.
%I A196058 #30 Jun 27 2024 09:42:09
%S A196058 0,1,2,2,3,3,2,2,4,4,4,3,3,3,5,2,3,4,2,4,4,5,4,3,6,4,4,3,4,5,5,2,6,4,
%T A196058 5,4,3,3,5,4,4,4,3,5,5,4,5,3,4,6,5,4,2,4,7,3,4,5,4,5,4,6,4,2,6,6,3,4,
%U A196058 5,5,4,4,4,4,6,3,6,5,5,4,4,5,4,4,6,4,6,5,3,5,5,4,7,5,5,3,6,4,6,6,4,5,4,4,5,3,3,4,5,7,5,3,5,4,6,5,5,5,5,5
%N A196058 Diameter (i.e., largest distance between two vertices) of the rooted tree with Matula-Goebel number n.
%C A196058 The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%H A196058 François Marques, <a href="/A196058/b196058.txt">Table of n, a(n) for n = 1..10000</a>.
%H A196058 Emeric Deutsch, <a href="http://arxiv.org/abs/1111.4288">Tree statistics from Matula numbers</a>, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
%H A196058 F. Göbel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H A196058 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H A196058 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H A196058 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H A196058 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A196058 a(1)=0; if n=prime(t), then a(n)=max(a(t), 1+H(t)); if n=r*s (r,s,>=2), then a(n)=max(a(r), a(s), H(r)+H(s)), where H(m) is the height of the tree with Matula-Goebel number m (see A109082). The Maple program is based on this recursive formula.
%F A196058 The Gutman et al. references contain a different recursive formula.
%F A196058 a(n^k) = 2*A109082(n) for k > 1. - _François Marques_, Mar 13 2021
%e A196058 a(2^m) = 2 because the rooted tree with Matula-Goebel number 2^m is a star with m edges.
%p A196058 with(numtheory): a := proc (n) local r, s, H: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: H := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then 1+H(pi(n)) else max(H(r(n)), H(s(n))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then max(a(pi(n)), 1+H(pi(n))) else max(a(r(n)), a(s(n)), H(r(n))+H(s(n))) end if end proc: seq(a(n), n = 1 .. 120);
%t A196058 r[n_] := r[n] = FactorInteger[n][[1, 1]];
%t A196058 s[n_] := s[n] = n/r[n];
%t A196058 H[n_] := H[n] = Which[n == 1, 0, PrimeOmega[n] == 1, 1 + H[PrimePi[n]], True, Max[H[r[n]], H[s[n]]]];
%t A196058 a[n_] := a[n] = Which[n == 1, 0, PrimeOmega[n] == 1, Max[a[PrimePi[n]], 1 + H[PrimePi[n]]], True, Max[a[r[n]], a[s[n]], H[r[n]] + H[s[n]]]];
%t A196058 Table[a[n], {n, 1, 120}] (* _Jean-François Alcover_, Nov 13 2017, after _Emeric Deutsch_ *)
%o A196058 (PARI) HD(n) = { if(n==1, return([0,0]),
%o A196058            my(f=factor(n)~, h=0, d=0, hd);
%o A196058            foreach(f, p,
%o A196058              hd=HD(primepi(p[1]));
%o A196058              hd[1]++;
%o A196058              d=max(max(d,if(p[2]>1, 2*hd[1], hd[2])),h+hd[1]);
%o A196058              h=max(h,hd[1])
%o A196058            );
%o A196058            return([h,d])
%o A196058            )
%o A196058 };
%o A196058 A196058(n)=HD(n)[2]; \\ _François Marques_, Mar 13 2021
%Y A196058 Cf. A109082.
%K A196058 nonn
%O A196058 1,3
%A A196058 _Emeric Deutsch_, Sep 30 2011