A196061 The multiplicative Wiener index of the rooted tree with Matula-Goebel number n.
1, 2, 2, 12, 12, 8, 8, 288, 288, 288, 144, 144, 144, 34560, 64, 144, 10368, 64, 13824, 13824, 34560, 10368, 3456, 24883200, 10368, 2985984, 5184, 13824, 4976640, 34560, 1024, 24883200, 13824, 8294400, 746496, 3456, 3456, 4976640, 1327104, 10368, 1492992, 5184, 8294400, 7166361600
Offset: 2
Keywords
Examples
a(7)=8 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with distances 1,1,1,2,2,2; product of distances is 8. a(2^m) = 2^[m(m-1)/2] because the rooted tree with Matula-Goebel number 2^m is a star with m edges and we have m distances 1 and m(m-1)/2 distances 2.
References
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, The multiplicative version of the Wiener index, J. Chem. Inf. Comput. Sci., 40, 2000, 113-116.
- I. Gutman, W. Linert, I. Lukovits, and Z. Tomovic, On the multiplicative Wiener index and its possible chemical applications, Monatshefte f. Chemie, 131, 2000, 421-427.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Links
- Emeric Deutsch, Tree statistics from Matula numbers, arXiv preprint arXiv:1111.4288 [math.CO], 2011.
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Cf. A196059.
Programs
-
Maple
with(numtheory): W := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc; if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(W(pi(n))+x*R(pi(n))+x)) else sort(expand(W(r(n))+W(s(n))+R(r(n))*R(s(n)))) end if end proc: a := proc (n) options operator, arrow: product(k^coeff(W(n), x, k), k = 1 .. degree(W(n))) end proc: seq(a(n), n = 2 .. 45);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True, R[r[n]] + R[s[n]]]; W[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, W[PrimePi[n]] + x*R[PrimePi[n]] + x, True, W[r[n]] + W[s[n]] + R[r[n]]*R[s[n]]]; a[n_] := Product[k^Coefficient[W[n], x, k], {k, 1, Exponent[W[n], x]}]; Table[a[n], {n, 2, 45}] (* Jean-François Alcover, Jun 22 2024, after Maple code *)
Formula
a(n) = Product_{k=1..d} k^c(k), where d is the diameter of the rooted tree with Matula-Goebel number n, and c(k) is the number of pairs of nodes at distance k (all these data are contained in the Wiener polynomial; see A196059). The Maple program is based on the above.
Comments