A196066 The reverse Wiener index of the rooted tree with Matula-Goebel number n.
0, 0, 2, 2, 8, 8, 3, 3, 20, 20, 20, 12, 12, 12, 40, 4, 12, 29, 4, 28, 28, 40, 29, 17, 70, 29, 36, 16, 28, 55, 40, 5, 70, 28, 53, 40, 17, 17, 55, 38, 29, 38, 16, 53, 68, 36, 55, 23, 36, 93, 53, 38, 5, 48, 112, 21, 38, 55, 28, 73, 40, 70, 45, 6, 92, 92, 17, 36, 68, 70, 38, 53, 38, 40, 114, 21, 89, 72, 53, 50
Offset: 1
Keywords
Examples
a(7)=3 because the rooted tree with Matula-Goebel number 7 is the rooted tree Y with N=4, d=2, W=9 (distances are 1,1,1,2,2,2); (1/2)*4*3*2-9 = 3.
References
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
- A. T. Balaban, D. Mills, O. Ivanciuc, and S. C. Basak, Reverse Wiener indices, Croatica Chemica Acta, 73 (4), 2000, 923-941.
Crossrefs
Cf. A196059.
Programs
-
Maple
with(numtheory): Wp := proc (n) local r, s, R: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: R := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(x*R(pi(n))+x)) else sort(expand(R(r(n))+R(s(n)))) end if end proc: if n = 1 then 0 elif bigomega(n) = 1 then sort(expand(Wp(pi(n))+x*R(pi(n))+x)) else sort(expand(Wp(r(n))+Wp(s(n))+R(r(n))*R(s(n)))) end if end proc: N := proc (n) options operator, arrow: 1+coeff(Wp(n), x) end proc: d := proc (n) options operator, arrow: degree(Wp(n)) end proc: W := proc (n) options operator, arrow: subs(x = 1, diff(Wp(n), x)) end proc: a := proc (n) options operator, arrow: (1/2)*N(n)*(N(n)-1)*d(n)-W(n) end proc: 0, seq(a(n), n = 2 .. 80);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; R[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, x*R[PrimePi[n]] + x, True, R[r[n]] + R[s[n]]]; Wp[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, Wp[PrimePi[n]] + x*R[PrimePi[n]] + x, True, Wp[r[n]] + Wp[s[n]] + R[r[n]]*R[s[n]]]; V[n_] := 1 + Coefficient[Wp[n], x]; d[n_] := Exponent[Wp[n], x]; W[n_] := D[Wp[n], x] /. x -> 1; a[n_] := If[n == 1, 0, (1/2)*V[n]*(V[n] - 1)*d[n] - W[n]]; Table[a[n], {n, 1, 80}] (* Jean-François Alcover, Jun 22 2024, after Maple code *)
Formula
a(n)=(1/2)N(n)*(N(n)-1)*d(n) - W(n), where N, d, and W are, respectively, the number of vertices, the diameter, and the Wiener index of the rooted tree with Matula-Goebel number n (all these data are contained in the Wiener polynomial; see A196059). The Maple program is based on the above.
Comments